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Abstract

Two independent surveys have found that about 70% of the thermometer stations in the U.S. Historical
Climatology Network (USHCN) dataset are currently poorly or badly sited. Previous investigations into
how this poor siting has affected estimates of U.S. temperature trends have led to apparently contradictory
conclusions. However, in this study, these contradictions are resolved, and it is shown that poor station
quality has introduced a noticeable warming bias into temperature trend estimates for the U.S.

For the unadjusted station records, this poor siting increased the mean temperature trends by about
32%. When time-of-observation adjustments were applied to the records, this increased temperature trends
by about 39%, and so the relative fraction of the trends due to the siting bias decreased. However, the
siting biases were still substantial, and increased trends by about 18%.

The step-change homogenization algorithm which had been developed to remove non-climatic biases such
as siting biases was shown to be seriously problematic. Instead of correcting the poorly- and badly-sited
station records to match the trends of the well-sited stations, it appears to have blended the temperature
records of all stations to match the trends of the poorly-sited stations.

It seems likely that similar poor siting biases also exist in global thermometer datasets, and this has
probably led to an overestimation of the amount of “global warming” since the 19th century.
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1 Introduction1

Two recent surveys[1, 2] of the local surroundings2

of the thermometer stations in the U.S. Historical3

Climatology Network (often abbreviated USHCN),4

have revealed that about 70% of the stations are cur-5

rently sited in poorly or badly exposed locations. It is6

well-known that the local environment within a few7

hundred metres of a thermometer station can lead8

to unusual “micro-climates”, which are unrepresen-9

tative of the climate in the surrounding area[3–10].10

For instance, nearby trees can reduce sunlight and11

∗Corresponding author: ronanconnolly@yahoo.ie. Website:
http://globalwarmingsolved.com

wind[3, 4] and thermometers kept above asphalt con- 12

crete can report temperatures considerably warmer 13

than over soil or grass[5, 6]. As a result, the temper- 14

ature records of poorly exposed stations are likely to 15

contain non-climatic biases from localised changes in 16

the micro-climate immediately surrounding the ther- 17

mometer housing. 18

These “siting biases” or “inadequate station ex- 19

posure biases” are different from the more widely- 20

studied “urbanization biases” which we discuss in 21

Refs. [11–13]. There are some similarities between 22

both types of bias, e.g., they can both arise as a re- 23

sult of modernization and/or urban development in 24

the area. However, while urbanization bias can phys- 25

ically alter the local climate of a large area, siting 26

biases are strictly confined to the localized micro- 27

climate in the immediate vicinity of the thermometer 28

station. Because of this, the two biases can occur 29

independently of each other, e.g., an urbanized sta- 30

tion with a strong urbanization bias may have a very 31

good station exposure, while a rural station with no 32

urbanization bias may have a strong siting bias due 33

to inadequate station exposure. In this study, we will 34
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focus on siting biases.35

The 1218 stations used for the U.S. Historical Cli-36

matology Network were selected according to their37

spatial coverage, record length, data completeness,38

and historical stability. For this reason, the U.S.39

Historical Climatology Network is the main dataset40

used for calculating monthly or annual temperature41

trends for the contiguous United States, i.e., all of42

the United States except Hawai‘i and Alaska. It is43

compiled and maintained by the National Climatic44

Data Center of the U.S.-based National Oceanic and45

Atmospheric Administration (NOAA) - referred to46

henceforth as the National Climatic Data Center.47

The U.S. Historical Climatology Network is also in-48

cluded in the National Climatic Data Center’s Global49

Historical Climatology Network (often abbreviated50

GHCN), which as we discuss elsewhere[13] is the main51

weather record dataset used for estimating global tem-52

perature trends. The stations in the U.S. network53

account for nearly 17% of the stations in the global54

network. But, more importantly, they account for55

the vast majority of the stations in the global net-56

work which are both rural and have relatively long,57

complete station records. For instance, 219 of the58

225 stations (i.e., 97.3%) in the Global Historical59

Climatology Network that are identified as rural in60

terms of both night-light brightness and associated61

populations, and have data for at least 95 of the last62

100 years are in the U.S. network. These long, ru-63

ral records are the ones least likely to be affected by64

urbanization bias - a systematic bias which we argue65

in Refs. [11–13] has introduced an artificial warming66

trend into weather station-based global temperature67

trend estimates.68

For these reasons, the U.S. network is an important69

part of any analysis of global temperature trends.70

Hence, problems in the reliability of the U.S. His-71

torical Climatology Network have implications not72

just for regional U.S. temperature trend estimates,73

but also for global temperature trend estimates. In74

this study we attempt to estimate the net sign and75

magnitude of the non-climatic biases introduced into76

the U.S. temperature records by inadequate station77

exposure.78

Our analysis is based on the results of the Surface79

Stations project carried out by Watts et al. [1], and80

suggests that inadequate station exposures have in-81

deed introduced a noticeable warming bias into U.S.82

temperature trends. It is probable that similar bi-83

ases exist in global temperature trend estimates. Sev-84

eral studies have previously attempted to construct85

estimates of the bias from the Surface Stations re- 86

sults, but have each reached different conclusions[2, 87

14–17]. We will attempt to rationalise the apparent 88

contradictions between the different analyses (includ- 89

ing ours). 90

The layout of this article is as follows. In Section 91

2, we will summarise the results of the Surface Sta- 92

tions project, and review the current literature on 93

how station quality can influence the station temper- 94

ature trends. In Section 3, we will present our analy- 95

sis of the poor station quality problem using the Sur- 96

face Stations results. In Section 4, we will compare 97

our analysis with the previous studies of the Surface 98

Stations results, and discuss the reasons for the differ- 99

ent conclusions between these studies. In Section 5, 100

we will make some practical suggestions and recom- 101

mendations that we believe could substantially im- 102

prove the quality of the available temperature record 103

datasets. Finally, we will offer some concluding re- 104

marks in Section 6. 105

2 Literature review 106

2.1 Motivation for the Surface 107

Stations project 108

The stations in the U.S. Historical Climatology 109

Network were taken from a larger network called 110

the NOAA Cooperative Observer Program Network, 111

(henceforth, the “COOP Network”), which is a 112

volunteer-run weather observation program for the 113

U.S. Since the stations are mostly volunteer-run, 114

sometimes the official recommendations provided to 115

the observers by NOAA National Weather Service on 116

how to maintain the station are overlooked. This has 117

led some researchers to speculate that the exposure of 118

some of the thermometer shelters may be inadequate. 119

For instance, Robinson, 1990[18] noticed that some 120

weather observers had dramatically altered the expo- 121

sure of their thermometer shelter when they switched 122

to using electronic thermometers. He cautioned that 123

this may have biased the temperature records. 124

In 2002, Davey & Pielke, 2005[8] carried out on- 125

site inspections of 57 COOP stations (including 10 126

Historical Climatology Network stations) in eastern 127

Colorado. They found that many of the stations 128

were poorly exposed. Some stations were located be- 129

side air conditioner exhausts, some were surrounded 130

by trees and/or buildings and some were set up 131

over a gravel surface instead of grass. Vose et al., 132

2005[19] and Peterson, 2006[20] argued that the Na- 133
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tional Climatic Data Center’s homogenization adjust-134

ments which were applied to some of the releases of135

the U.S. Historical Climatology Network had already136

removed (or at least reduced) any such biases. But,137

Pielke et al., 2007b[10] questioned the reliability of138

the adjustments.139

Vose et al., 2005[19] had also claimed that Davey &140

Pielke’s study was over too small a part of the U.S.141

to assume it was a widespread problem. However,142

Mahmood et al., 2006 showed that inadequate sta-143

tion siting was also a systematic problem for stations144

in Kentucky[6]. So, in 2007, Watts decided to extend145

Davey & Pielke’s study. Together with a group of146

more than 650 volunteers, he began visual and pho-147

tographic on-site inspections of all of the U.S. Histor-148

ical Climatology Network stations, with his Surface149

Stations project. In Section 2.2, we will summarise150

their findings and in the following sections we will151

discuss the implications of these findings.152

2.2 Summary of the Surface Stations153

findings154

Figure 1: The relative percentage of different expo-
sure ratings in the U.S. Historical Climatology Network
stations that have been rated by the Surface Stations
project.

The Surface Stations project used the rating155

scheme followed by the National Climatic Data156

Center when they were establishing a high quality157

weather station network called the United States Cli-158

mate Reference Network (USCRN) in 2002. This159

scheme was described in a NOAA technical docu- 160

ment[21] and was based on a scheme proposed by 161

Leroy, 1999[22]. 162

The main parameter by which the stations were 163

classified was the distance of the thermometer sensor 164

from artificial heating sources (or reflecting surfaces), 165

such as buildings, concrete surfaces or parking lots. 166

Rating 1 There are no artificial heating sources 167

within at least 100 m of the sensor. 168

Rating 2 There are artificial heating sources within 169

30 to 100 m of the sensor. 170

Rating 3 There are artificial heating sources within 171

10 to 30 m of the sensor. 172

Rating 4 There are artificial heating sources less 173

than 10 m from the sensor. 174

Rating 5 There are artificial heating sources located 175

next to, or below, the sensor. 176

The higher the rating number, the more likely it is 177

that temperature readings have been biased by un- 178

representative micro-climate conditions. Ratings 1 179

and 2 have excellent or good site exposure, and so 180

are unlikely to be biased by micro-climate conditions, 181

while measurements at Rating 5 sites are likely to be 182

dominated by micro-climate biases. If a station is 183

strongly influenced by micro-climate changes, then 184

this reduces the reliability of its temperature records 185

for considering climatological trends. Hence, for this 186

analysis we define stations with ratings of either 1 or 187

2 to be “good quality”, those with a rating of 3 as “in- 188

termediate quality”, those with a rating of 4 as “poor 189

quality” and those with a rating of 5 as “bad quality”. 190

Leroy, 1999 also recommended that all stations 191

should be located on flat and horizontal ground, sur- 192

rounded by a clear surface with a slope of less than 193

19◦. He recommended that the stations should also 194

be far from large bodies of water, unless they are 195

representative of the area, in which case the station 196

should still be located at least 100 m away[22]. How- 197

ever, he did not indicate how to modify the ratings 198

if stations did not meet those requirements, so these 199

factors do not appear to have been included in the 200

Surface Stations rating system. 201

Additional requirements for a station to be clas- 202

sified with Rating 1 were that the surrounding 203

grass/low vegetation ground cover is less than 10 cm 204

high, and that the sensor stops being shaded once the 205

sun reaches an elevation of 3◦ or lower. If either of 206

these requirements are broken, then the best rating 207
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the station can receive is Rating 2. However, in this208

analysis, since only about 1% of the stations have209

Rating 1, we group both Ratings 1 and 2 together,210

and so do not consider the vegetation and shading211

factors.212

The Surface Stations group have archived ratings213

for 1007 out of the 1218 stations (82.7%) which we214

downloaded on 8th March 2012 from their website215

at http://www.surfacestations.org. We show the216

relative percentages of these ratings in Figure 1, and217

their locations in Figure 2. Examples of stations from218

each of the four subsets are shown in Figure 3. It can219

be seen that only about 8% of the stations have a220

good quality rating (1 or 2), and the majority of the221

rated stations have poor or bad quality ratings of 4222

or 5 (70%).223

For a few of the unrated stations, the Surface Sta-224

tions team were able to determine that the rating225

changed substantially in recent years, and so, they226

were not assigned a rating. For instance, Malad City,227

ID (105559) would currently have a rating of 4, but228

only since 2008, while the Houma, LA (164407) sta-229

tion would have had a rating of 3 during the pe-230

riod 2004-2007. This confirms that station qualities231

change over time, and so it should be recognised that232

the current Surface Stations ratings are only based233

on the station quality they had at the time of the234

surveys. Obviously, it would be preferable if simi-235

lar assessments were also available for early periods.236

Nonetheless, we will see that it is still possible to237

make useful retrospective assessments of the poor sta-238

tion quality problem from just the current ratings.239

In response to the Surface Stations findings, NOAA240

National Weather Service carried out independent re-241

assessments of 276 of the stations. Their reassess-242

ments confirmed that the Surface Stations ratings243

were reasonably accurate, and that poor siting is in-244

deed a systemic problem in the U.S. Historical Cli-245

matology Network[2].246

Watts, 2009 provided photographs of many of the247

stations and it can be seen that, in many cases, sta-248

tion thermometers were situated near (or over) as-249

phalt roads or parking lots, and beside buildings,250

sometimes beside the exhaust fans of air condition-251

ing units, amongst many other problems[1]. This ex-252

plains why so many of the stations received a bad253

rating. All of these problems could easily have bi-254

ased the station records, and so it is important to255

reliably account for any such biases.256

2.3 Previous assessments of the 257

Surface Stations findings 258

When the Surface Stations project had rated most 259

of the stations, Watts published a photographic re- 260

port illustrating the remarkably high occurrence of 261

poor quality siting in the U.S. Historical Climatol- 262

ogy Network[1]. He discussed how it was plausible 263

that this poor quality siting had introduced artificial 264

warming trends into many of the station records, and 265

that this would have introduced warming biases into 266

the regional U.S. temperature trends which had been 267

calculated from the Historical Climatology Network, 268

e.g., Ref. [23]. He also suggested that similar prob- 269

lems could exist for the rest of the Global Historical 270

Climatology Network. He did not attempt to quan- 271

tify this proposed bias, however. 272

At the time of writing, at least five studies (aside 273

from our own) have attempted to quantify the extent 274

of this bias, by using the Surface Stations results[2, 275

14–17]. However, before we discuss these studies, it 276

is important to briefly consider the different temper- 277

ature datasets available for the stations. 278

The National Climatic Data Center provide three 279

different releases of their U.S. Historical Climatol- 280

ogy Network datasets[24], which differ in the degree 281

to which they have been adjusted for potential non- 282

climatic biases. 283

One of their releases is essentially unadjusted, but 284

has undergone a set of quality control checks to re- 285

move individual monthly values which appear erro- 286

neous, e.g., monthly temperatures that are far greater 287

than (or far less than) the seasonal average for that 288

station. We will refer to this release as the “Unad- 289

justed” dataset. 290

In a second release, they have also applied specific 291

adjustments to the temperature records for each sta- 292

tion to account for documented changes in the time of 293

day that the observers made their measurements[25, 294

26]. We will refer to this release as the “Time of 295

observation adjusted” dataset. 296

For their third release, they also carry out a series 297

of station-station inter-comparisons to identify and 298

remove station-specific non-climatic step-changes[27]. 299

We will refer to this release as the “Time of observa- 300

tion and step-change adjusted” dataset. The National 301

Climatic Data Center also apply inter-station inter- 302

polation to “fill in” any missing gaps in the station 303

records for the third release. 304

Although there is now a general acceptance that 305

the findings of the Surface Stations project are ac- 306

curate, and that the majority of the stations in the 307
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Figure 2: Location of stations in the U.S. Historical Climatology Network with different siting quality ratings, as
well as the remaining unrated stations.

U.S. Historical Climatology Network are of a poor or308

bad quality, there has been considerable debate over309

exactly what biases, if any, this poor siting has ac-310

tually introduced into the reported U.S. temperature311

trends.312

Menne et al., 2010 suggested that the National Cli-313

matic Data Center’s homogenization procedure[24]314

had already accounted for any biases which poor sit-315

ing may have introduced. Moreover, they suggested316

that if there was any residual bias, it was probably317

a slight cooling bias[2], rather than the warming bias318

Watts, 2009 had suggested.319

Muller et al., 2013[15] claimed that the linear320

trends of the Unadjusted records for stations with321

Ratings 1, 2 or 3 were comparable to those of stations322

with Ratings 4 or 5, and that there was not much323

difference between estimates constructed from the324

Ratings 1-3 and Ratings 4-5 subsets of the USHCN.325

Therefore, they concluded that poor siting did not326

have much effect on the temperature trends.327

Martinez et al., 2012 used the Surface Stations rat-328

ings in their analysis of temperature trends for the329

state of Florida (USA)[16]. For their study, they330

used the Time-of-observation and step-change ad-331

justed dataset. As they were only studying the trends332

for Florida, their study only involved 22 Historical333

Climatology Network stations. So, they were cau-334

tious about drawing definitive conclusions on the ef- 335

fects of poor station quality on temperature trends. 336

Nonetheless, they found the linear trends were dif- 337

ferent for the subsets of the worst rated (4 & 5) and 338

best rated (1 & 2) over the two periods they con- 339

sidered - 1895-2009 and 1970-2009. From this they 340

concluded that station quality does influence temper- 341

ature trends. However, they were unclear as to the 342

sign of this influence. For the 1895-2009 period, the 343

poor quality stations showed a greater warming trend 344

in the mean monthly temperatures than the good 345

quality stations, while for the 1970-2009 period, the 346

reverse applied. 347

Fall et al., 2011[14] agreed with Menne et al., 2010 348

that the National Climatic Data Center’s homoge- 349

nization adjustments reduced much (although not all) 350

of the difference between the good quality and poor 351

quality subsets. But, they argued that the Unad- 352

justed and Time-of-observation adjusted trends of the 353

poor quality stations showed a substantial warming 354

bias relative to the good quality stations. They also 355

argued that poor exposure led to biases in Diurnal 356

Temperature Range (DTR) trends. 357

The Diurnal Temperature Range is the difference 358

between the mean maximum daily temperatures and 359

the mean minimum daily temperatures. Although 360

it is not as widely studied as the mean temper- 361
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(a) Fallon, Nevada (Good quality) (b) Boulder, Colorado (Intermediate quality)

(c) Napa State Hospital, California (Poor quality) (d) Santa Rosa, California (Bad quality)

Figure 3: Examples of stations from each of the four subsets - Good quality (Fallon; ID = 262780, Rating
2); Intermediate quality (Boulder; ID = 050848, Rating 3); Poor quality (Napa State Hospital; ID = 046175,
Rating 4); Bad quality (Santa Rosa; ID = 047965, Rating 5). Photographs were downloaded from http:

//surfacestations.org/ . The photographer for these four stations was Anthony Watts.

ature trends, there has been considerable interest362

in Diurnal Temperature Range trends, partly be-363

cause it is thought they can provide insight into the364

cause of mean temperature trends, e.g., Refs. [28–365

30]. Fall et al. calculated that the worst-sited sta-366

tions implied a Diurnal Temperature Range trend of367

−0.4◦C/century, whereas the best-sited stations had368

essentially no long-term trend.369

Watts et al. (in preparation, 2012)[17] argued that370

the original Leroy et al., 1999[21, 22] rating system371

used by Watts, 2009 was not rigorous enough, and372

they re-evaluated the station exposures using the rec-373

ommendations of Leroy et al., 2010[31]. When they374

applied this new rating system to the stations, they375

found a greater difference between the poor quality 376

and good quality stations than before (for the Unad- 377

justed records), with the poorly-sited stations show- 378

ing more warming. They questioned the reliability 379

of the National Climatic Data Center’s homogeniza- 380

tion adjustments, and suggested that a combination 381

of poor station exposure, urbanization bias and unre- 382

liable homogenization adjustments had led to a spu- 383

rious doubling of U.S. mean temperature trends over 384

the period 1979-2008. 385
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2.4 Exposure problems for the early386

instrumental period387

Before we discuss our re-analysis of the Surface Sta-388

tions findings, it is worth discussing a related station389

exposure problem which has also received some dis-390

cussion in the literature lately. Namely, there have391

been several attempts to estimate the extent to which392

changes in the types of thermometer shelters used by393

weather observers have biased 18th, 19th and early394

20th century temperature records, relative to modern395

records[7, 32–44].396

During the 20th century, a lot of the thermome-397

ters used by weather observers were housed in out-398

door shelters like the Stevenson screen1. In recent399

decades, many stations have switched to using au-400

tomated thermometer systems. Although there may401

have been instrumental biases from the switch in in-402

strumentation during the recent move to automa-403

tion[45–47] and some of the station observers also404

seem to have reduced the quality of the station ex-405

posure[1, 2, 18], the new automated stations are also406

outdoor shelters. However, before the introduction of407

the Stevenson-type screens, thermometers had quite408

different station exposures. For instance, in the early409

1700s, English weather observers were encouraged to410

keep their thermometers unscreened and indoors in411

well-ventilated, north-facing, fireless rooms[7].412

Chenoweth, 1992[32] and 1993[33] noted that many413

U.S. observers in the late 19th century and early414

20th century were using similar unscreened, north-415

facing, thermometers, and even when screens were416

introduced, there was a wide range of different types417

of screens. In many cases, the siting of the screen was418

often inappropriate, e.g., attached to a wall[32], and419

would have received a bad or poor rating under the420

Surface Stations project. In some cases, thermome-421

ters located at railway stations, frequently registered422

artificially high temperatures when trains arrived at423

the station, but also sometimes gave minimum tem-424

peratures that were too low if the arriving train shook425

the thermometer[32].426

Parker, 1994[34] compiled some information on427

the thermometer exposures recommended by different428

countries between the mid-19th and mid-20th cen-429

turies, and found that the recommended thermome-430

ter exposures often varied dramatically over time.431

Unfortunately, most of the available information is432

rather limited, and establishing the actual thermome-433

1Invented in the 19th century by Sir Thomas Stevenson,
the father of the well-known author, Robert Louis Stevenson.

ter exposures used has been contentious. For exam- 434

ple, there has been considerable debate over when the 435

use of Stevenson screens first became widespread in 436

Australia[35–39]. 437

It is quite likely that these changes in thermome- 438

ter shelters introduced biases of some sort (sometimes 439

called “shelter biases”, “screen biases” or “early in- 440

strumental period biases”). However, establishing 441

what those biases would have been is difficult. The bi- 442

ases introduced into daily averages by different ther- 443

mometer exposures could depend on a number of fac- 444

tors, e.g., the observation time and averaging method 445

used; the degree of urbanization of the site; the mate- 446

rials the nearby buildings were constructed from; the 447

station siting of both the old and new exposures. 448

Some studies have attempted to estimate these 449

biases by comparing temperature measurements 450

recorded simultaneously at the same site by ther- 451

mometers with different shelters[32–34, 40, 43, 44]. 452

In some cases, these studies were carried out during 453

the actual change-over, i.e., the late-19th/early 20th 454

century[33, 34, 40]. However, in other cases, they are 455

modern attempts to recreate the transition[32, 33, 40, 456

43, 44]. 457

We note that these experiments are not as straight- 458

forward as commonly assumed. For instance, 459

Chenoweth, 1992 calculated different estimates of the 460

screen bias of a north-facing window thermometer rel- 461

ative to a thermometer in a Cotton Region Shelter (a 462

similar shelter to the Stevenson screen), depending 463

on which Cotton Region Shelter he used. For his es- 464

timates, he had two different shelters, one located in 465

his backyard, and the other in a nearby field. From 466

the photographs in Chenoweth, 1992, it appears to us 467

that one of the shelters would have had a good quality 468

Surface Stations rating, while the other would have 469

had a poor quality rating[32]. This suggests that any 470

screen biases would have depended on the siting of 471

the old and new thermometers. 472

We also note that many of the stations with long 473

records are currently more urbanized than they would 474

have been in the 18th/19th centuries. Since urban- 475

ization bias as well as other land use changes are 476

known to affect the diurnal temperature range at a 477

station[29], it is possible that estimates of different 478

screen biases carried out using modern field tests may 479

over/underestimate the actual biases. For instance, 480

we used Google Earth to analyse aerial photographs 481

of the study sites used by Brunet et al., 2011[44] (see 482

the Supplementary Information for the Google Earth 483

station location files and some aerial photographs). 484

Open Peer Rev. J., 2014; 11 (Clim. Sci.), Ver. 0.1. http://oprj.net/articles/climate-science/11 page 7 of 34

http://oprj.net/articles/climate-science/11


Both of the sites Brunet et al. used appear to485

be highly urbanized, and the local environment has486

clearly undergone dramatic changes since the 19th487

century. For this reason, it is likely that the cur-488

rent “screen bias” is different than it would have489

been in the 19th century/early 20th century when the490

Montsouri shelters (which Brunet et al., 2011 were as-491

sessing) were actually in use. We note that the bias492

appears to be greater at the more urbanized of the493

two stations (Murcia). From the aerial photographs,494

it also appears that both sites would receive a poor495

or bad Surface Stations rating, however, it is possible496

that this was also the case for the historic sites.497

In contrast, the site used for the Böhm et al., 2010498

study[43] is located in a relatively rural location, at499

a Benedictine monastery in Kremsmünster, Austria.500

However, while it is a useful comparative study, their501

estimates of the screen bias are not necessarily repre-502

sentative.503

Their old window thermometer is located in a tall504

astronomical tower with panoramic views of the sur-505

rounding town. Meanwhile, the new shelter is in a506

heavily shaded garden in front of the building, sur-507

rounded on all four sides by either tall buildings or508

trees.509

Shelters exposed in the shade will tend to register510

lower maximum temperatures than properly exposed511

shelters[32]. So, if their new shelter was too heavily512

shaded, then this would have exaggerated Böhm et513

al.’s estimate of the screen bias. Analysis of the lo-514

cation of the new shelter suggests it does suffer from515

shading problems. For instance in the 8th August516

2012 aerial Google Earth photograph for the location517

(see Supplementary Information), the shelter was in518

shadow, and it was also in shadow in the photograph519

shown in Böhm et al., 2010, which was taken on 21st520

March 2007[43].521

Another potential problem in estimating the shel-522

ter biases is that the observation times and averaging523

methods used by observers have also changed over524

time. As we will discuss in Section 4.4, different ob-525

servation times and averaging methods can lead to526

different estimates of the daily mean temperature at527

a station. So, the biases introduced by changes in528

the thermometer shelter used would have depended529

on which averaging method the observers were using.530

In particular, we note that the apparent biases531

often seem to be greatest for the minimum and532

maximum daily temperatures, and could have been533

smaller for some of the observation times which might534

have been used. Many modern weather observers use535

minimum-maximum thermometers and approximate 536

the daily mean temperature by calculating the mean 537

of the maximum and minimum temperatures reached 538

during the previous 24 hours. But, especially in the 539

18th and 19th centuries, many observers would have 540

measured the temperatures at specific times in the 541

day, and estimated the daily average using those mea- 542

surements. When the different shelters were being de- 543

veloped in the 19th century, there was considerable 544

awareness of the biases that different thermometer 545

exposures introduced[33, 34, 40]. So, it is plausible 546

that, in some cases, the averaging formulae used were 547

partially chosen in an attempt to minimise the screen 548

biases. 549

For all these reasons, we find the current estimates 550

of these screen biases are still incomplete, and require 551

more careful studies. Despite this, several researchers 552

believe that screen biases have led to a significant 553

overestimation of pre-20th century summer tempera- 554

tures[34, 37, 39–44]. This is considered a particular 555

problem for the longest thermometer records, which 556

are mostly European. One of the main reasons for 557

this belief appears to be because temperature proxies 558

for the same areas suggest colder 18th century tem- 559

peratures than the thermometer records[41–43]. We 560

review this “convergence problem” issue in a separate 561

paper[48], and a detailed comparison of temperature 562

proxies and thermometer records is beyond the scope 563

of this article. However, we will note that it seems 564

ironic that, while some researchers are arguing that 565

early thermometer records are unreliable because the 566

temperature proxies show colder temperatures, other 567

researchers are arguing that temperature proxies are 568

unreliable for the late 20th century, because they do 569

not show the warm temperatures of the thermometer 570

records[49, 50], i.e., the so-called “divergence prob- 571

lem”. 572

3 Our reanalysis 573

For our analysis of the siting biases in the U.S. His- 574

torical Climatology Network, we first downloaded the 575

station ratings from the Surface Stations website (on 576

8th March 2012). Ratings were available for 1007 577

out of the 1218 stations (82.7%). We then divided 578

the stations with ratings into four subsets, i.e., good 579

quality, intermediate quality, poor quality and bad 580

quality, as described in Section 2.2. For each of these 581

subsets we calculated the gridded mean temperature 582

trends using the three different U.S. Historical Clima- 583

tology Network datasets, i.e., the Unadjusted, Time- 584
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Figure 4: Mean gridded trends for each of the four
subsets using the Unadjusted dataset. Solid lines corre-
spond to the 11 point binomial smoothed versions of the
annual values. Confidence errors correspond to twice
the standard error of the annual means.

of-observation adjusted and Time-of-observation and585

step-change adjusted datasets.586

To calculate the gridded mean trends we adopted587

a similar procedure to the one we used in Refs. [11–588

13]. Namely, we first converted all of the station589

annual temperature records for a given subset into590

temperature anomalies relative to the mean station591

temperature during a 30 year baseline period, 1895-592

1924. As we will discuss in Section 4.1, this differs593

from the 1961-1990 baseline period we used in Refs.594

[11–13], because we wanted to better study the di-595

vergence between subsets over time. Stations which596

did not have at least 5 years of data during this pe-597

riod were dropped from our analysis. This also differs598

from the 15 year minimum we used in Refs. [11–13].599

As we will discuss in Section 4.1, this was because600

we wanted to reduce the number of stations dropped601

from our analysis. 87 of the 1218 stations (∼ 7%)602

were dropped from our analysis for this reason.603

Figure 5: Mean gridded trends for each of the
four subsets using the Time-of-observation adjusted
dataset. Solid lines correspond to the 11 point binomial
smoothed versions of the annual values. Confidence er-
rors correspond to twice the standard error of the annual
means.

Stations were then assigned to 5◦ × 5◦ grid boxes. 604

For each year, the mean temperature anomalies for 605

each of the grid boxes were calculated by determining 606

the simple mean of the temperature anomalies of all 607

the stations in that box with data for that year. 608

The mean U.S. temperature anomaly for each year 609

was then calculated as the area-weighted mean of all 610

of the grid box means. Standard errors of the mean 611

were also calculated using the method described in 612

the Supplementary Information. 613

The mean U.S. temperature trends for each of the 614

four subsets, using each of the three datasets are 615

shown in Figures 4, 5 and 6. 616

The different estimates of U.S. temperature trends 617

all have a lot of similarities, but there are also sub- 618

stantial differences between them. In terms of the 619

similarities, one striking feature is the pronounced al- 620

ternation between “warming” periods and “cooling” 621
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Figure 6: Mean gridded trends for each of the four
subsets using the Time-of-observation and step-change
adjusted dataset. Solid lines correspond to the 11 point
binomial smoothed versions of the annual values. Con-
fidence errors correspond to twice the standard error of
the annual means.

periods, each lasting several decades. Since the start622

of the estimates in 1895, there seem to have been two623

warm periods (1920s-1930s and 1990s-2000s) and two624

cool periods (1900s-1910s and 1960s-1970s).625

One of the main differences between the estimates626

is in how the warm periods and cool periods compare627

to each other. For the good quality and intermediate628

quality, Unadjusted subsets, the early warm period629

appears comparable to the recent warm period, and630

the early cool period appears comparable to the re-631

cent cool period. However, as the quality of the sub-632

sets decreases, or as the datasets become more heavily633

adjusted, the relative warmth of the early warm pe-634

riod appears to decrease, and the recent cool period635

appears warmer.636

It is worth noting that, if the less heavily-adjusted,637

good quality subsets are reliable, then the recent638

warming in the U.S. does not appear unusual in the639

Figure 7: Bar charts showing the 1895-2011 linear
trends of each of the subsets, and the weighted mean of
the subsets, for each of the three datasets. The dashed
blue lines correspond to the linear trend of the Unad-
justed good quality subset.

context of the overall record. This would contradict 640

the popular perception that, because of man-made 641

global warming, the recent warm period is the hottest 642

on record in the U.S.[51–53]. The 1930s coincided 643

with a period of drought in parts of the U.S. leading 644

to the economically disastrous “Dust Bowl era”[54], 645

so it is quite plausible that this period of drought 646

also corresponded to a warm period. However, there 647

are many non-climatic biases present in long-term 648

temperature records like the U.S. Historical Clima- 649

tology Network. So, if the adjustments applied by 650

the National Climatic Data Center have successfully 651

removed these biases, then this would make the ad- 652

justed datasets more reliable. For this reason, we 653

will consider the implications of all three datasets. 654

We will assess the reliability of the National Climatic 655

Data Center’s adjustments in Sections 4.4 and 4.5. 656

The temperature trends of the estimates show 657
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strongly non-linear behaviour. So, as we will discuss658

in Section 4.2, calculating the linear trends for the659

estimates is a very crude method for describing the660

temperature trends. Nonetheless, it offers a simple661

metric which allows us to make rough comparisons662

between the different estimates.663

Table 1 lists the 1895-2011 linear trends for each664

of the estimates, as calculated by linear least squares665

fitting. The linear trends are also shown graphically666

in Figure 7. The corresponding r2 fitting parameters667

are also shown in Table 1, and it can be seen that668

most of the linear trends are very poor fits. This is669

as expected, since the trends are quite non-linear. So,670

the linear trend values should be treated cautiously.671

We first note that all of the subsets have a long-672

term “warming” trend, i.e., they all have positive lin-673

ear trends for the 1895-2011 period. However, as674

we mentioned above, this is not surprising, or par-675

ticularly informative. The 1890s-1910s were a rela-676

tively cool period and the 1980s-2000s were a rela-677

tively warm period, so it would be expected that all678

estimates should have a positive trend.679

Second, the net effect of each of the adjustments680

applied by the National Climatic Data Center is to681

substantially increase the linear trends of the esti-682

mates. For example, the Unadjusted good quality683

subset has a linear trend of +0.21◦C/century, but684

when the time-of-observation adjustments are ap-685

plied, this doubles to +0.42◦C/century, and it in-686

creases by a similar amount after the step-change687

adjustments to +0.64◦C/century. Similar increases688

occur for all subsets. The only exception is that the689

step-change adjustments reduce the linear trend of690

the bad quality subset.691

The next thing we note is that there are indeed sub-692

stantial differences between the linear trends of the693

different subsets. For the Unadjusted and Time-of-694

observation adjusted datasets, the good quality and695

intermediate quality subsets have the lowest linear696

trends and the trend consistently increases from the697

intermediate quality to the poor quality to the bad698

quality subsets. This suggests that the biases due to699

inadequate station exposure introduce non-climatic700

warming trends into the temperature records.701

The step-change adjustments dramatically reduce702

the differences between subsets. There are at least703

two schools of thought on why this occurs. Some704

researchers have argued that this is because the step-705

change adjustments have managed to remove the sit-706

ing biases at each station[2]. However, a second ex-707

planation is that the reduction arises because the sit-708

ing biases have been blended or “homogenized” to- 709

gether, rather than removed. In Section 4.5, we ar- 710

gue in favour of this second argument. Watts has also 711

favoured this second argument in on-line commentary 712

on his website[55]. 713

In Table 1, we also list the weighted mean lin- 714

ear trend of the rated stations, which is calculated 715

by weighting the trend of each subset by the per- 716

centage of stations in that subset. Although these 717

weighted mean trends are less than for the poor and 718

bad quality subsets, they are still greater than the lin- 719

ear trends for the good quality subset. This suggests 720

that the mean U.S. temperature trends are indeed 721

significantly biased by inadequate station exposure. 722

Surprisingly, the linear trends for the Unadjusted 723

and Time-of-observation adjusted datasets are actu- 724

ally slightly smaller for the intermediate quality sub- 725

set than for the good quality subset. This appears to 726

contradict the expectation that the bias should con- 727

tinuously decrease in going from the worst quality 728

subsets to the best quality subsets. 729

As Muller et al., 2013 suggest, it is plausible that 730

the intermediate quality stations are of a high enough 731

quality that they are unbiased[15]. After all, the only 732

difference between Ratings 2 and 3 is the distance of 733

the station from heating sources, and this distance is 734

at least 10m for Rating 3 stations. So, it might be 735

that 10m is a sufficient distance for a station to be 736

unaffected by inadequate station exposure. In that 737

case, since the sample size of the intermediate qual- 738

ity subset is considerably larger than the good quality 739

subset (see Figure 1), it could be that the trends of 740

the intermediate subset are the most reliable. How- 741

ever, this is not clear, and on physical grounds, we 742

know that the good quality subset is the least likely 743

of the subsets to have biases due to inadequate sta- 744

tion exposure. Therefore we will assume that the 745

good quality subset is the best representation of the 746

“unbiased” subset, in terms of station exposure. This 747

gives slightly lower estimates of the biases for the Un- 748

adjusted and Time-of-observation adjusted datasets. 749

On this basis, we estimate the siting biases for 750

each subset by subtracting the good quality temper- 751

ature trends of the appropriate dataset from the sub- 752

set temperature trends. These difference trends are 753

shown in Figure 8. The 1895-2011 linear trends and 754

r2 fitting parameters are listed in Table 2. 755

Again, the difference trends show substantial non- 756

linearity. But, it can be seen from Figure 8, that 757

the linear fits do at least offer a rough approximation 758

of the 1895-2011 trend. On this basis, we can cal- 759
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Unadjusted Time-of-observation ad-
justed

Time-of-observation and
step-change adjusted

Subset ◦C/century r2 ◦C/century r2 ◦C/century r2

Good (8%) +0.21 0.03 +0.42 0.10 +0.64 0.23
Intermediate (22%) +0.17 0.02 +0.37 0.09 +0.68 0.25
Poor (64%) +0.36 0.10 +0.54 0.19 +0.69 0.28
Bad (6%) +0.48 0.16 +0.83 0.37 +0.57 0.21
Weighted mean +0.31 +0.51 +0.67

Table 1: Linear trend estimates (◦C/century), calculated by linear least squares fitting, of the four subsets and
three different datasets shown in Figures 4, 5 and 6. r2 shows the fitting coefficients, which theoretically can vary
from 0 (poor fit) to 1 (perfect fit)

Figure 8: Annual differences between the good quality subset and each of the other subsets for the three datasets.
Solid lines correspond to the differences between the 11 point binomial smoothed versions. The coloured dashed
lines correspond to the 1895-2011 linear trends of the differences.

culate rough estimates for the siting bias of each of760

the datasets from either Tables 1 or 2. For Table 1,761

we can do so by subtracting the linear trend of each762

subset from the linear trend for the good quality sub-763

set. This gives the same values as in Table 2, since764

the linear trend of the differences is equivalent to the765

difference between the linear trends.766

The biases in the Unadjusted dataset seem to be767

about +0.15◦C/century for the poor quality sub-768

set and +0.27◦C/century for the bad quality sub-769

set (see Tables 1 or 2). For the set of all the770

rated U.S. Historical Climatology Network stations,771

i.e., the weighted mean, the siting bias seems to be772

about +0.10◦C/century. As a percentage of the lin-773

ear trends, this means that siting biases account for774

approximately 42% of the poor quality trends, 56%775

of the bad quality trends and 32% for the entire rated776

network. 777

The magnitude of the biases in the Time- 778

of-observation adjusted dataset are similar, i.e., 779

+0.13◦C/century for the poor quality subset, 780

+0.41◦C/century for the bad quality subset and 781

+0.09◦C/century for the entire rated network. How- 782

ever, since the time-of-observation adjustments con- 783

sistently increase the linear trends of all subsets by 784

about +0.2◦C/century, the fraction of the trends due 785

to siting bias is less. That is, the percentage of the 786

trends due to siting biases is reduced to 24% of the 787

poor quality subset, 49% of the bad quality subset 788

and 18% of the full rated network. Having said 789

that, the time-of-observation adjustments increase 790

the trends of the bad quality subset by more than 791

any of the other subsets (+0.35◦C/century), which 792

increases the difference between the good and bad 793
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Unadjusted Time-of-observation
adjusted

Time-of-observation and
step-change adjusted

Subset ◦C/100y r2 Bias ◦C/100y r2 Bias ◦C/100y r2 Bias
Intermediate - good -0.04 0.01 -24% -0.05 0.03 -14% +0.05 0.09 +7%
Poor - good +0.15 0.16 +42% +0.13 0.16 +24% +0.05 0.09 +7%
Bad - good +0.27 0.27 +56% +0.41 0.40 +49% -0.06 0.05 -11%

Table 2: Linear trends (◦C/century) of the differences between the good quality subsets and the other subsets,
calculated by least squares fitting from the data shown in Figure 8, for each of the datasets. r2 shows the fitting
coefficients, which vary from 0 (poor fit) to 1 (perfect fit). “Bias” shows the ratio of the linear trend of the
difference relative to the linear trend of the subset, as a percentage.

quality subsets, i.e., our estimate of the siting biases.794

So, this suggests that siting biases still account for795

about 49% of the trends of the bad quality subset.796

The percentage of the trends in the Time-of-797

observation adjusted subsets that are due to the time-798

of-observation adjustments are as follows: Good qual-799

ity = 50% adjustments; intermediate quality = 54%800

adjustments; poor quality = 33% adjustments; bad801

quality = 42% adjustments; entire rated network802

= 39% adjustments. We will consider the time-of-803

observation adjustments in Section 4.4.804

On average, the step-change adjustments also805

substantially increase the linear trends, by about806

+0.16◦C/century (for the entire rated network).807

However, the step-change adjustments are quite dif-808

ferent for each of the subsets. In particular, the809

increase in trend is greatest for the good and in-810

termediate quality subsets (+0.22◦C/century and811

+0.31◦C/century, respectively), and the adjustments812

actually decrease the trend for the bad quality sub-813

sets (by −0.26◦C/century).814

As a result, the differences between the subsets are815

substantially reduced, and the estimates of the siting816

biases for the Time-of-observation and step-change817

adjusted dataset are dramatically reduced. Indeed,818

since the trend of the bad quality subset is now less819

than the good quality subset, it could be argued, as820

Menne et al., 2010 did[2], that the bias becomes a821

slight “cooling” bias (−0.06◦C/century) for the worst822

sited stations. The linear trend of the good quality823

subset is still less than for the entire rated network824

(+0.64◦C/century compared to +0.67◦C/century -825

see Table 1). So, nominally, it could be argued that826

there is still a bias of about +0.03◦C/century, but827

this is less than 5% of the linear trend of the entire828

rated network.829

The problem in assessing the biases in the Time-of-830

observation and step-change adjusted dataset arises831

from uncertainties over the reliability of the step-832

change adjustments. The step-change adjustments 833

were developed in an attempt to identify and remove 834

any non-climatic step-change biases in the tempera- 835

ture records[27], e.g., station relocations or changes 836

in instrumentation. So, a plausible explanation for 837

the reduction in the differences between the subsets 838

is that the adjustments have succeeded in removing 839

the non-climatic siting biases, as Menne et al., 2010 840

contend[2]. However, as Watts notes in on-line com- 841

mentary[55], another plausible explanation is that the 842

adjustments have blended together the biases from 843

each of the subsets, leading to all subsets being bi- 844

ased by about the same amount. In Section 4.5, we 845

argue that the latter explanation is more likely. 846

In any case, it appears that siting biases have in- 847

creased the temperature trends of the entire rated 848

network by about 32% for the Unadjusted dataset 849

and about 18% for the Time-of-observation adjusted 850

dataset. This is a substantial non-climatic bias, 851

which contradicts the claims of others, e.g., Muller 852

et al., 2013[15]. The linear trends of the bad qual- 853

ity subset are particularly heavily biased by siting 854

bias (56% for the Unadjusted dataset and 49% for the 855

Time-of-observation adjusted dataset), although it is 856

true that the bad quality subset only makes up 6% of 857

the U.S. Historical Climatology Network (Figure 1). 858

4 Discussion and comparison 859

with the previous analyses 860

Initially, it might appear that there are serious con- 861

tradictions between each of the attempts to use the 862

Surface Stations results to estimate the biases intro- 863

duced to U.S. temperature trends by inadequate sta- 864

tion exposure. However, in this section, we will at- 865

tempt to reconcile these apparent contradictions, and 866

establish reasonable estimates for the actual siting bi- 867

ases present in the U.S. Historical Climatology Net- 868
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work. In Section 2.3, we discussed the findings of869

the Watts, 2009[1]; Menne et al., 2010[2]; Muller et870

al., 2013[15]; Martinez et al., 2012[16]; and Watts et871

al. (in preparation, 2012)[17], while in Section 3, we872

discussed the findings of our analysis.873

All six of these studies have taken slightly different874

methodological approaches to analysing the Surface875

Stations results. So, in Section 4.1, we will first sum-876

marise these differences, and assess what influence877

they might have had on the conclusions of the differ-878

ent studies.879

A major problem with analysing the Surface Sta-880

tions results is that both the temperature trends of881

the individual subsets and the difference trends be-882

tween the subsets are non-linear (as we discussed in883

Section 3). This means that using linear trend anal-884

ysis is an overly simplistic approach. Nonetheless all885

six of the studies (including ours) use linear trend886

analysis. In Section 4.2, we will highlight some of the887

problems involved in using this approach.888

Probably the most difficult challenge in estimating889

the siting biases lies in the fact that there are many890

other non-climatic biases present in the U.S. Histori-891

cal Climatology Network. This means that it is diffi-892

cult to establish how much of the differences between893

subsets are actually due to the siting biases, and how894

much are due to other factors. In Section 4.3, we895

will consider how one such factor (urbanization bias)896

could influence the siting bias estimates.897

A popular approach to minimising this problem has898

been to rely on datasets that have been statistically899

“homogenized” in an attempt to reduce the magni-900

tude of these non-climatic biases. However, this ap-901

proach will only be successful if the homogenization902

techniques work. So, it is important to assess the re-903

liability of these techniques. In Section 4.4, we will904

consider the time-of-observation adjustments, while905

in Section 4.5, we will assess the step-change adjust-906

ments.907

4.1 Use of different subsets and908

averaging approaches909

In this section, we will consider some of the main910

methodological differences between each of the Sur-911

face Stations studies, and estimate what impact these912

differences have on the conclusions of the studies.913

• Different approaches to regional averaging914

Menne et al., 2010 calculated their regional trends915

for the contiguous U.S. by first assigning all of the916

stations in each subset to 0.25◦ × 0.25◦ grid boxes, 917

then calculating the mean monthly anomalies for each 918

of those boxes. The grid anomalies were then area- 919

weighted to yield regional anomalies for each of the 920

subsets[2]. 921

Instead of gridding the stations, Fall et al., 2011 di- 922

vided the contiguous U.S. into nine climatic regions, 923

then calculated the mean monthly anomalies of the 924

different subsets for each of those regions. These re- 925

gional means were then weighted by the areas of the 926

regions, and averaged to give regional averages for the 927

entire contiguous U.S.[14]. Watts et al. (in prepara- 928

tion, 2012) also adopted this approach[17]. 929

Our approach is probably intermediate between 930

those two approaches. Like Menne et al., 2010, we 931

used an area-weighted uniform gridding. However, in 932

keeping with our global analyses in other papers[11– 933

13], we used a much larger grid size (5◦ × 5◦). This 934

larger grid size still yields about 40 grid boxes for the 935

contiguous U.S. which is more than the 9 regions used 936

by Fall et al. and Watts et al. 937

The Martinez et al., 2012 study just considered a 938

single state (Florida) which only contained 22 sta- 939

tions. So, they did not attempt gridding and just 940

calculated the monthly means of all the stations in 941

each subset. The area of the state of Florida is less 942

than one of our 5◦×5◦ grid boxes, so this is probably 943

reasonable. 944

Fall et al., 2011 argue that the net differences be- 945

tween their approach and Menne et al.’s is very small 946

when averaged over the contiguous U.S.[14]. So, it 947

seems likely that the different gridding approaches 948

used by us, Menne et al., Fall et al., Watts et al. 949

and Martinez et al. are all reasonably equivalent, 950

and therefore have probably not introduced much of 951

a difference between the analyses. 952

Having said that, Muller et al., 2013 did not use a 953

gridding approach, but instead used a particular sta- 954

tistical interpolation approach. In a separate study, 955

we note that this approach to calculating regional 956

(and global) temperature trends appears to dampen 957

the differences between different station records[11]. 958

We suspect that this is one reason why they were 959

unable to detect much of a difference between their 960

subsets, since other studies[14, 17] (including ours) 961

were able to detect significant differences between the 962

subsets in the Unadjusted datasets used by Muller et 963

al. 964

• Different rating data sets 965

We downloaded the station ratings from the Sur- 966

face Stations website on 8th March 2012. The rat- 967
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ings available then were the ones used by Fall et al.,968

2011[14], and were determined from surveys carried969

out by the Surface Stations volunteers between 2nd970

June, 2007 and 23rd February, 2010. Ratings were971

available for 1007 out of the 1218 stations (82.7%).972

This was also the dataset used by Muller et al., 2013973

and Martinez et al., 2010[16]. However, the other974

studies used slightly different versions of the dataset.975

Watts, 2009[1] was based on a preliminary analysis976

(2nd November, 2009) which only included ratings977

for 865 stations. However, although the Menne et978

al., 2010 study was carried out in response to the979

Watts, 2009 study, it was based on an even earlier980

(18th April, 2008) provisional dataset, in which only981

525 stations had been rated (43.1%), and these rat-982

ings had not undergone quality control. According983

to Watts, Menne et al. were in the process of ask-984

ing him for the more complete dataset used in the985

Watts, 2009 study, but stopped when Watts asked to986

be involved in their study[55].987

For the Watts et al. (in preparation, 2012) stud-988

ies, further refinements and additional station surveys989

were available (15th June, 2011 - 1st July, 2012)[17].990

But, since the Watts et al. study is still in prepa-991

ration, the newer dataset had not been published on992

the Surface Stations website at the time of writing.993

Although Menne et al., 2010 only used a provi-994

sional dataset, their results apparently broadly agree995

with those of the Fall et al., 2011 and Muller et al.,996

2013 studies[14, 15]. This suggests that, while their997

sample may have been somewhat biased by the “low-998

lying fruit problem”, as Watts warned[55], the prelim-999

inary dataset was probably sufficiently complete for1000

an approximate estimate. For this reason, it seems1001

that the different sample sizes used by the studies did1002

not majorly influence their results.1003

In addition, as a prelude to the Menne et al. study,1004

NOAA National Weather Service Forecast Office per-1005

sonnel investigated 276 of the 525 stations (52.6%)1006

and confirmed those ratings from the Surface Sta-1007

tions project[2]. Hence, the Menne et al., 2010 study1008

offers an independent confirmation of the poor qual-1009

ity of the station sitings.1010

The Watts et al. (in preparation, 2012) study uses1011

the most up-to-date version of the dataset. However,1012

they used a new rating system described by Leroy,1013

2010[31], which is apparently more rigorous. As a re-1014

sult, they were only able to calculate ratings for 7791015

of the stations under the new system. This is still a1016

larger sample than the Menne et al., 2010 study, and1017

Watts et al. claim that the new system is able to more1018

accurately distinguish between good and poor quality 1019

stations[17]. The new system increases the percent- 1020

age of stations identified as Rating 1 (6% compared to 1021

1% under the old system); Rating 2 (14% compared 1022

to 7%); Rating 3 (32% compared to 22%) and Rating 1023

5 (12% compared to 6%), but decreases the percent- 1024

age of stations identified as Rating 4 (36% compared 1025

to 64%). 1026

Since the ratings under the new system have not 1027

been published yet, we have not been able to quan- 1028

tify the effects such a change would have on our anal- 1029

ysis. But, in general, if particular aspects of poor 1030

siting lead to greater biases, then a rating system 1031

which more rigorously distinguishes between these as- 1032

pects should provide more accurate estimates of the 1033

biases. We would expect the magnitude of our esti- 1034

mated biases to increase under such a system, since, 1035

under a less rigorous system, some stations which are 1036

relatively unbiased would have been misidentified as 1037

having a worse quality, while other stations which 1038

are relatively biased would have been misidentified 1039

as having a better quality. 1040

Watts et al., (in preparation, 2012) argue that the 1041

new Leroy, 2010 rating system leads to an increase in 1042

the differences between subsets[17], which suggests it 1043

is an improved system. If so, it is encouraging that 1044

the new system more than doubles the percentage of 1045

stations identified as being of good quality, because it 1046

suggests that it may be possible to isolate a relatively 1047

large subset of high quality stations for estimating 1048

U.S. temperature trends, after all. 1049

• Different sub-setting approaches 1050

As can be seen from Figure 1, the good and bad 1051

quality subsets have relatively small sample sizes. In 1052

particular, only 1% of the stations are of Rating 1, 1053

and these stations are not evenly distributed across 1054

the U.S. (see Figure 2). It is plausible that these small 1055

sample sizes and uneven distributions could introduce 1056

statistical artefacts. In an attempt to minimise these 1057

potential artefacts, all of the studies have grouped at 1058

least some of the ratings together. 1059

In the Menne et al., 2010 study, the small sample 1060

size problems were accentuated, because they only 1061

had ratings for 525 stations[2]. For that reason, they 1062

decided to consider only two subsets - a “good” sub- 1063

set comprising the 71 stations of their sample with 1064

Ratings 1 or 2 (13.5%), and a “poor” subset compris- 1065

ing the 454 stations with Ratings 3, 4 or 5 (86.5%). 1066

We saw in Section 3 that while the Rating 5 sub- 1067

set shows a large apparent warming bias (in the Un- 1068

adjusted dataset at least), and the Rating 4 subset 1069
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shows a considerable apparent warming bias, the lin-1070

ear trends of the Rating 3 subset are actually the1071

lowest of all of the subsets, and that the apparent bi-1072

ases are “cooling”. So, by grouping Ratings 3, 4 and 51073

together, the Menne et al. study would have reduced1074

the differences between their two subsets, making it1075

harder to detect the siting biases. In addition, their1076

“good” subset only included 71 stations, which were1077

not evenly distributed across the country. So, their1078

analysis might still have been affected by the problem1079

of inadequate sample sizes.1080

Muller et al., 2013 argued from the fact that the1081

Rating 3 stations had the lowest linear trends, that1082

they were not affected by siting biases[15]. Hence,1083

for the main part of their analysis, they constructed1084

two subsets - an “OK” subset comprising stations1085

with Ratings 1, 2 and 3 and a “bad” subset com-1086

prising stations with Ratings 4 and 5. However, it1087

must be acknowledged that their preliminary analy-1088

sis involved a separate histogram of linear trends for1089

all five subsets, and they also included an additional1090

two subsets for their Table 1 (which listed the mean1091

linear trends of different subsets) - “good” and “poor”1092

using the same grouping as Menne et al.1093

There was only two Rating 3 stations available for1094

the Martinez et al., 2012 study[16], and a total of1095

just 22 stations, so they created two subsets - one1096

from the 5 stations of Ratings 1 and 2 and the other1097

from the 13 stations of Ratings 4 and 5 (2 stations1098

were unrated). As we will discuss in Section 4.3, and1099

is apparent from Figure 1 and Table 1 of Martinez1100

et al., 2012[16], there are a number of climatic differ-1101

ences between the 22 stations in the Martinez et al.1102

study. So, it is probable that much of the apparent1103

differences between the subsets may be due to con-1104

founding factors other than siting bias. Martinez et1105

al., 2012 were conscious of this and cautioned against1106

relying on their comparisons too much[16].1107

For our analysis, we wanted to avoid grouping too1108

many stations with different ratings together, but1109

considered the sample size of the Rating 1 stations1110

to be too small for a statistical analysis. Hence, we1111

grouped the Rating 1 and Rating 2 stations together1112

(as the “good quality” subset) and considered four1113

subsets, as described in Section 2.2. This means that1114

we were able to distinguish between the poor quality1115

and bad quality subsets, for instance. However, it1116

does mean it is probable that some of the apparent1117

differences between our subsets is related to the small1118

sample sizes and uneven distribution of the smaller1119

subsets, i.e., the good quality and bad quality sub-1120

sets, which only had 80 and 66 stations, respectively. 1121

Fall et al., 2011 also used our subsetting approach. 1122

But, in addition, they attempted to assess the effects 1123

of the uneven distribution of the good quality and 1124

bad quality subsets, by carrying out a second analy- 1125

sis testing the effects of using “proxies” for the good 1126

and bad quality stations[14]. They constructed a re- 1127

placement “proxy network” for both their good and 1128

bad quality subsets by substituting each of the Rating 1129

1 or 2 stations (for the good subset) and the Rating 1130

5 stations (for the bad subset) with the nearest sta- 1131

tions with a Rating of 3 or 4. They then compared 1132

these proxy subsets with the full subset of all stations 1133

with Ratings 3 or 4. They found that the 1979-2008 1134

linear trends of the two proxy networks were differ- 1135

ent from those of the full subset. This confirms that 1136

at least some of the apparent differences between the 1137

subsets is due to uneven distribution and small sam- 1138

ple sizes[14]. 1139

Watts et al. (in preparation, 2012) used a differ- 1140

ent rating system, which divided the stations into 1141

more evenly distributed subsets[17]. So, even though 1142

the total number of rated stations was less than for 1143

our analysis, the statistical problems of small sample 1144

size and uneven distribution should have been con- 1145

siderably reduced. At the time of writing, Watts et 1146

al. had not yet archived these new ratings, but it is 1147

likely that, when they are available, they would lead 1148

to more reliable estimates of the siting biases. 1149

• Different homogenization steps of the tempera- 1150

ture records 1151

As we mentioned in Section 2.3, the National Cli- 1152

matic Data Center provide three different releases of 1153

their U.S. Historical Climatology Network dataset. 1154

The station records in two of their releases have been 1155

adjusted in an attempt to remove the presence of non- 1156

climatic biases[24]. We saw from Figures 4, 5 and 6, 1157

as well as Table 1, that most of these adjustments 1158

have the effect of increasing the long-term trends of 1159

all of the subsets. 1160

If the adjustments are of similar magnitudes in all 1161

subsets, then this should not overly affect the esti- 1162

mates of the siting biases, since the differences be- 1163

tween subsets would remain similar. However, we 1164

saw in Section 3 that, while the time-of-observation 1165

adjustments applied to each subset are quite simi- 1166

lar, the step-change adjustments dramatically reduce 1167

the differences between the subsets. As a result, 1168

the estimates of the siting biases from the Time-of- 1169

observation and step-change adjusted dataset will be 1170
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much smaller than those determined from the other1171

datasets.1172

The step-change adjustments were designed for re-1173

moving non-climatic biases[27]. So, it is plausible1174

that they may have removed (or reduced) the magni-1175

tude of the siting biases in the records. In this case,1176

the convergence of the station records would repre-1177

sent an improvement in their reliability, suggesting1178

the lower estimates are more realistic. However, if1179

the step-change adjustments are inadequate then this1180

convergence would actually represent a reduction in1181

their reliability. We will assess the reliability of the1182

step-change adjustments in Section 4.5.1183

Menne et al., 2010 argue that the step-change ad-1184

justments could have removed many of the siting bi-1185

ases present in the unadjusted dataset[2]. They there-1186

fore claim that the Time-of-observation and step-1187

change adjusted dataset is the most reliable, and1188

hence their estimates of the siting biases are very1189

low. Also assuming that the adjustments are reli-1190

able, Martinez et al., 2012 only considered the Time-1191

of-observation and step-change adjusted dataset[16].1192

In contrast, Muller et al., 2013 only considered the1193

Unadjusted dataset[15]. However, they carried out1194

their own independent data homogenization adjust-1195

ments. Like, Fall et al., 2011[14], we considered all1196

three releases in our analysis. We assess the validity1197

of the adjustments in Section 4.4 and 4.5.1198

Watts et al. (in preparation, 2012) was scep-1199

tical of the reliability of the adjustments, because1200

they noticed that the adjustments consistently in-1201

creased the 1979-2010 linear warming trends of all1202

subsets, even when they further sub-divided the sub-1203

sets by removing stations likely to be strongly af-1204

fected by non-climatic warming biases, i.e., urbanized1205

stations and airport stations[17]. As a result, they1206

considered the Unadjusted dataset to be more reli-1207

able than the Time-of-observation and step-change1208

adjusted dataset, and used the former for their main1209

conclusions. They did not analyse the Time-of-1210

observation adjusted dataset, as they considered such1211

an analysis beyond the scope of their study[17].1212

Since the step-change adjustments reduce the dif-1213

ferences between subsets, in general, studies which1214

favour the Time-of-observation and step-change ad-1215

justed dataset should tend to obtain lower estimates1216

of the siting biases. However, we do note that Muller1217

et al., 2013 obtained a low estimate, even though they1218

used the Unadjusted dataset[15], while Martinez et1219

al., 2012 found evidence of strong siting biases, even1220

though they used the Time-of-observation and step-1221

change adjusted dataset[16]. 1222

• Use of different baseline anomaly periods. 1223

A common approach to constructing gridded tem- 1224

perature trends is to convert each of the tempera- 1225

ture records into “temperature anomalies” relative to 1226

a fixed baseline period, e.g., 1961-1990. This means 1227

that, for each station, the mean temperature of that 1228

station over this period was subtracted from all of its 1229

annual temperatures. This “common anomaly” ap- 1230

proach[56] has the advantage that gridded averages 1231

are not overly affected by changes in the numbers 1232

of “cold” (e.g., high altitude) and “warm” (e.g., low 1233

latitude) stations which have data for a given year. 1234

Typically, a 30 year period is chosen, as this is gen- 1235

erally considered long enough to reduce the noise of 1236

inter-annual temperature changes, but short enough 1237

that most records will have enough data in the pe- 1238

riod. 1239

Unfortunately, the common anomaly approach has 1240

the disadvantage that it artificially increases the ap- 1241

parent agreement between stations near the anomaly 1242

period (e.g., 1961-1990). This can be easily under- 1243

stood by recognising that if the anomaly period is 1244

shortened to one year, then the gridded average tem- 1245

perature anomaly for that year will be exactly 0.0◦C, 1246

by definition. A consequence of this is that the dif- 1247

ferences between any two subsets may be artificially 1248

reduced near the anomaly period. 1249

Figure 9: The percentage of U.S. Historical Clima-
tology Network stations which have to be dropped from
analysis when different 30 year baseline periods and data
requirements are used.

To reduce the effect of this statistical artefact, we 1250

chose the earliest possible 30 year period for our anal- 1251

ysis, i.e., 1895-1924. This means that the difference 1252

between the subsets should be low at the start of the 1253
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records, and any long-term divergences between the1254

subsets should become more pronounced towards the1255

end of the records.1256

A difficulty in using an early anomaly period is that1257

many of the shorter records will not have enough data1258

during that period to calculate an anomaly mean.1259

From Figure 9 it can be seen that very few stations1260

have complete records for the entire 30 year period,1261

regardless of the period chosen2. However, if we are1262

content to allow stations to be missing some data in1263

the anomaly period, anomaly averages can be calcu-1264

lated for most of the stations during a lot of different1265

baseline periods.1266

In our analyses in other studies, we typically use1267

the 1961-1990 period and a requirement of at least1268

15 years data[11–13]. However, for this analysis, the1269

requirement of at least 15 years, would have meant1270

discarding more than 30% of the stations for the 1895-1271

1924 period (Figure 9). As a result, we reduced this1272

restriction to a minimum of 5 years during the 1895-1273

1924 period. This reduced the number of stations1274

which had to be discarded to 87, or about 7% of the1275

available stations.1276

Each of the other studies used different anomaly1277

periods. Menne et al., 2010[2] and Martinez et al.,1278

2012[16] used the 1971-2000 period. Watts et al. (in1279

preparation)[17] and Fall et al., 2011 used 1979-2008,1280

but Fall et al. also considered a 36 year period, 1895-1281

1930[14]. Muller et al., 2013 used a 31 year period,1282

1950-1980[15].1283

It is plausible that these different anomaly periods1284

could alter the subset trends. To test this possibility,1285

we repeated our analysis using the 1961-1990 period1286

(which is the same one we use in our other papers[11–1287

13]). The mean gridded temperature trends of each1288

of the subsets using the two different baseline peri-1289

ods are shown in Figure 10. As there are a large1290

number of plots shown, we have just shown the 11-1291

point binomial smoothed trends, for clarity. The an-1292

nual variability and standard errors of the mean for1293

the non-smoothed plots are similar to those shown in1294

Figures 4, 5 and 6.1295

Individually, the mean trends of each of the sub-1296

sets are essentially the same under both baseline peri-1297

ods. The only major difference is that they have been1298

rescaled to a different baseline. This is confirmed1299

by Table 3, where we have calculated the 1895-20111300

linear trends for each of the equivalent subsets. Al-1301

2The situation is better for the Time-of-observation and
step-change adjusted dataset, since many of these data gaps
have been filled in using inter-station and intra-station inter-
polation.

1895-2011 linear trends (◦C/century)
Baseline period

Subset 1895-1924 1961-1990
Unadjusted

Good quality 0.21 0.24
Intermediate quality 0.17 0.21
Poor quality 0.36 0.34
Bad quality 0.48 0.55

Time-of-observation adjusted
Good quality 0.42 0.41
Intermediate quality 0.37 0.39
Poor quality 0.54 0.51
Bad quality 0.83 0.91
Time-of-observation and step-change adjusted
Good quality 0.64 0.64
Intermediate quality 0.68 0.69
Poor quality 0.69 0.69
Bad quality 0.57 0.57

Table 3: 1895-2011 linear trends for each of the subsets
using different baseline periods, calculated by linear least
squares fitting.

though there are some differences between the trends 1302

calculated using the different baseline periods, they 1303

are quite small. Some of these differences are proba- 1304

bly due to fact that some of the stations (87 or ∼ 7%) 1305

did not have enough data during the 1895-1924 pe- 1306

riod, and so were not included in the gridded means. 1307

Instead, the main differences arise when we are 1308

comparing different subsets. We can see that, as ex- 1309

pected from our discussion above, all plots converge 1310

near the baseline period. This creates the false im- 1311

pression of extra agreement between subsets near the 1312

baseline period compared to other periods. We can 1313

see this extra agreement is merely a statistical arte- 1314

fact, because when we change the baseline period 1315

from 1895-1924 to 1961-1990, the apparent period of 1316

greatest “agreement” also shifts. 1317

A less obvious statistical artefact occurs for the 1318

Time-of-observation and step-change adjusted sub- 1319

sets. For this dataset, the National Climatic Data 1320

Center has applied a series of pairwise step-change 1321

adjustments to each of the station records in an at- 1322

tempt to reduce the amount of non-climatic step bi- 1323

ases. We will discuss these adjustments further in 1324

Section 4.5, but here it is worth noting that these 1325

adjustments are carried out by adjusting the earlier 1326

portions of the records relative to the most recent 1327

portions. In other words, the annual adjustments for 1328

each record converge towards zero for the most recent 1329
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Figure 10: Comparison of the 11 point binomial smoothed temperature trends of each of the subsets, using two
different anomaly baseline periods - top panels: 1895-1924 and bottom panels: 1961-1990.

year[24]. Since the adjustments can be of either sign,1330

this means that applying these adjustments should1331

lead to a partial convergence between all adjusted1332

station records for the most recent year (in this case,1333

2011).1334

Since the biases of the poor and bad quality subsets1335

are often estimated by considering the differences be-1336

tween subsets, it is important to recognise these artifi-1337

cial statistical convergences will reduce the apparent1338

differences. In particular, the apparent biases (i.e.,1339

the differences between subsets) will be substantially1340

reduced during whatever baseline period is chosen.1341

In addition, for the Time-of-observation and step-1342

change adjusted datasets, the biases will be artificially1343

reduced for recent years. For this reason, it is impor-1344

tant to estimate the extent of the poor station quality1345

biases over the entire 1895-now period, even if it is1346

believed that the biases were mostly introduced in1347

recent decades[1, 2]. Of the previous analyses, only1348

Fall et al., 2011 considered the effects of the first arti-1349

ficial convergence, i.e., the effect of changing baseline1350

periods[14]. The artificial convergence introduced by1351

the National Climatic Data Center’s step-change ad-1352

justments does not appear to have been considered1353

before now.1354

4.2 Over-reliance on linear trend1355

analysis1356

Wunsch, 1999[57] and Percival & Rothrock, 2005[58]1357

have illustrated how random, trend-less data series1358

frequently produce apparent “linear trends”, but that1359

these are spurious. This is well known in the field1360

of time series analysis, but Wunsch, 1999 correctly1361

notes that it is frequently overlooked by researchers1362

studying climate trends[57]. We would like to stress1363

another point, which while also well-known in the 1364

field of regression analysis, is often overlooked by re- 1365

searchers considering temperature trends - namely, 1366

that, even if there are genuine trends in the data, 1367

if the trends are non-linear, calculating their “linear 1368

trends” can often be misleading. 1369

All five of the previous studies attempting to quan- 1370

tify the significance of the Surface Stations results use 1371

linear trend analysis[2, 14–17], and even the prelim- 1372

inary qualitative analysis of Watts, 2009 uses linear 1373

trends to discuss one of their figures (Figure 23 of 1374

Watts, 2009)[1]. We also presented much of our dis- 1375

cussion in terms of linear trend analysis. But, as we 1376

discussed in Section 3, the data we are discussing is 1377

quite non-linear in nature. So, it is important to con- 1378

sider the limitations of linear analysis. 1379

There certainly is considerable convenience in cal- 1380

culating the linear trend for a data series. It provides 1381

a relatively simple, single value for describing an en- 1382

tire data series, and is included as a standard tool 1383

in most statistical data analysis packages, and even 1384

spreadsheet software. However, the problem occurs 1385

when it is used on data series that have substantial 1386

non-linearities in their trends. A “linear trend” can 1387

nominally be calculated for any two-dimensional se- 1388

ries of data points, regardless of whether the series 1389

is linear or not, but if the series is non-linear then 1390

its “linear trend” might be completely meaningless. 1391

Aside from the fact that, by framing their analysis 1392

in terms of linear trends, researchers may become bi- 1393

ased into prematurely expecting the trends to have an 1394

underlying “linear behaviour”, this means that non- 1395

linear trends will be overlooked. 1396

Some researchers take a more sophisticated ap- 1397

proach to linear trend analysis, by calculating the 1398

significance of the linear fits, e.g., the Martinez et al., 1399
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2012 study used three separate statistical tests for1400

assessing the significance of their linear trends[16].1401

However, while this is preferable to using linear1402

trends without testing, it is still an inadequate ap-1403

proach, if the data series show non-linear trends. This1404

is particularly the case, when the number of data1405

points in the series is low (a point Martinez et al.,1406

2012 concede[16]). For instance, if a data series con-1407

tains only two points, then the “linear fit” of the1408

points will nominally be a “perfect fit”. Of course, in1409

reality, this tells us nothing about whether the data1410

series is genuinely linear or not.1411

We have intentionally plotted the trends of the1412

twelve subsets in Figures 4, 5 and 6 without including1413

their “linear trends”, as we have found that whenever1414

a plot is shown with a linear trend, many readers will1415

then mentally “see” a linear trend in the data, even1416

if the actual trends is totally non-linear, e.g., cycli-1417

cal. This is perhaps an artefact of the way the hu-1418

man brain has evolved a high tendency towards false1419

pattern recognition[57, 59]. In any case, the danger1420

of this tendency can be illustrated by comparing the1421

subsets in any of those figures. All of our subsets have1422

positive linear trends when considered over the entire1423

1895-2011 period (see Table 1). So, if a researcher re-1424

lied on those linear trends for their comparison, they1425

might find all of the subsets to be fairly similar, in1426

that they all “showed warming”. However, it can be1427

seen from Figure 8 that there are actually substan-1428

tial differences between the subsets. For instance, for1429

the time-of-observation adjusted datasets in Figure1430

5, the good quality subset appears to have alternated1431

between periods of “warming” and “cooling”, each1432

lasting several decades. In contrast, the bad qual-1433

ity subset suggests an almost continuous “warming”1434

trend. Both subsets have a positive linear trend for1435

the period 1895-2011, but for the good quality subset,1436

this is merely a consequence of the 1890s-1900s being1437

cooler than the 1990s-2000s, i.e., if a different start-1438

ing point, and period length was chosen, both the1439

sign and the magnitude of the “linear trend” could1440

change.1441

Figure 11 shows some of the different linear trends1442

which can be calculated for the time-of-observation1443

adjusted good exposure subset by merely varying the1444

start year and the length of time over which the trend1445

is calculated. Depending on the start year, periods of1446

both “cooling” and “warming” can be found. In ad-1447

dition, the magnitude of the trends depends strongly1448

on the number of years included in the calculation.1449

For instance, the maximum and minimum trends for1450

Figure 11: Linear trends, using different starting years
and period lengths, for the time-of-observation adjusted
good quality subset.

the 30 year calculations are an order of magnitude 1451

greater than the maximum and minimum trends for 1452

the 90 year calculations (+3.96 and -2.33 ◦C/century 1453

compared to +0.33 and -0.11 ◦C/century). If the 1454

temperature trends were truly linear then the values 1455

of the linear trends should not depend on either the 1456

start year or the number of years included. 1457

The difference between the bad quality and good 1458

quality subsets is slightly better characterised by a 1459

linear fit - see Figure 12. Although the shorter 1460

time-scale linear fits show considerable variability, the 1461

mean values for each of the time-scales are of the same 1462

order of magnitude (see Table 4). In addition, aside 1463

for a few of the 30 year estimates, the trends are all 1464

of the same sign, i.e., indicating a warming of the bad 1465

quality stations relative to the good quality stations. 1466

This slightly better fit is also confirmed by the better 1467

fitting coefficients (compare the r2 values in Tables 1 1468

and 2). 1469

However, even with these better fits, the 30 year 1470

estimates still show considerable variability over the 1471

entire period. The bias appears to be greatest for the 1472

1934-1963 period. Although most periods suggest a 1473

warming bias, for three short periods, the bias ap- 1474
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Figure 12: Linear trends, using different starting years
and period lengths, for the difference between the good
and bad quality time-of-observation adjusted subsets.
For comparison with Menne et al., 2010[2], the 1980-
2009 linear trend is highlighted.

pears to be a cooling one, i.e., the trends beginning1475

during the period 1895-1900, 1907-1914 or 1970-19821476

(ending in 1924-1929, 1936-1943 and 1999-2011 re-1477

spectively) are negative. We note that much of the1478

analysis by Menne et al., 2010 was based on 30 year1479

linear trends during one of these negative trend pe-1480

riods - their analysis was on the 1980-2009 linear1481

trends[2]. This might have contributed to their con-1482

clusion that poor station siting leads to a cooling bias,1483

i.e., the opposite of our conclusions.1484

It can be seen that linear trends provide an overly1485

simplistic description of non-linear time series, such1486

as the subset temperature trends and difference1487

trends we are considering in this study. Therefore,1488

we do not recommend relying heavily on linear anal-1489

ysis in this case. Most of the previous analyses have1490

relied very heavily on linear analysis, which limits the1491

validity of their conclusions.1492

Having said that, linear trends do offer crude ap-1493

proximations of the overall trends, and can provide a1494

helpful method for crudely comparing subsets and1495

biases. Hence, we recognise they can be useful, pro- 1496

vided that the non-linear nature of the data is ade- 1497

quately discussed. 1498

Linear trends (◦C/century)
Period of fit Mean Minimum Maximum
30 years +0.39 -1.14 +1.55
60 years +0.63 +0.05 +1.02
90 years +0.62 +0.49 +0.70
Whole range +0.41 N/A N/A

Table 4: Mean, maximum and minimum linear trends
of the difference between the bad and good subsets, for
each of the time-scales used in Figure 12.

4.3 Neglecting urbanization bias 1499

In a series of three papers, we discuss how urban- 1500

ization bias has introduced artificial warming trends 1501

into many of the station records[11–13]. Although 1502

this problem seems to be more serious for the non- 1503

U.S. component of the Global Historical Climatology 1504

Networks, it is still a significant problem for the U.S. 1505

component. 1506

Figure 13: Location of the Florida stations used by
the Martinez et al., 2012 study[16], and the degree of
urbanization of those stations.

As the U.S. Historical Climatology Network is part 1507

of the Global Historical Climatology Network, we 1508

can use the estimates of station urbanization pro- 1509

vided with the Global Historical Climatology Net- 1510

work dataset[60], to estimate the extent of urbaniza- 1511

tion in the U.S. network. The National Climatic Data 1512

Center provide two estimates of urbanization for their 1513

Global Historical Climatology Network stations - one 1514

based on the population in the general area of the 1515
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station and one based on the 1994/1995 night light1516

brightness at the station. Under each estimate, a sta-1517

tion can be “rural”, “sub-urban” or “urban”. As we1518

did in Ref. [13], we will here define a station as “fully1519

rural” if it is identified as “rural” by both estimates,1520

“fully urban” if it is identified as “urban” by both1521

estimates, and otherwise “intermediate”.1522

Using these definitions, of the 1218 U.S. Historical1523

Climatology Network stations, 277 (22.7%) are fully1524

rural, 842 (69.1%) are intermediate and 99 (8.1%)1525

are fully urban. As we discuss in Ref. [13], this1526

is relatively rural compared to the averages for the1527

Global Historical Climatology Network. However,1528

only 22.7% of the stations are fully rural, so it is1529

likely that a substantial fraction of the stations are1530

affected by at least some urbanization bias.1531

Since urbanization bias generally leads to an ar-1532

tificial warming trend, it can easily affect estimates1533

of the separate bias due to the station siting. For1534

instance, because the Martinez et al., 2012 study fo-1535

cused on a single state (Florida), only two of the sta-1536

tions were rated 5, and only five were rated 1 or 2.1537

As can be seen from Figure 13, only three of the 221538

Florida stations considered by Martinez et al., 20121539

are identified as fully rural (blue squares). So, it is1540

likely that much of the differences between the dif-1541

ferent stations are actually due to different amounts1542

of urbanization bias. All three of the fully rural sta-1543

tions (Federal Point, Inverness 3 SE and Madison)1544

had the same Surface Stations rating of 4, and so it1545

would not have been possible for them to just use the1546

fully rural stations for investigating the effects of the1547

different ratings.1548

Figure 14: Locations of good quality stations, showing
urbanized regions. Urban boundaries were determined
using the GRUMP dataset[61].

The National Climatic Data Center have argued 1549

that their data homogenization should have removed 1550

much of the urbanization bias from the Time of ob- 1551

servation and step-change adjusted dataset[24, 62]. 1552

However, as we discuss in Ref. [13], their step-change 1553

homogenization method is inadequate for removing 1554

urbanization bias, especially if the neighbours they 1555

use for homogenization are also affected by urban- 1556

ization bias. Indeed, Pielke et al., 2007b note that 1557

such step-change homogenization algorithms provide 1558

inaccurate results when applied to stations with trend 1559

biases, such as urbanization bias[10]. 1560

For the COOP neighbours used by the National 1561

Climatic Data Center for homogenizing the Histori- 1562

cal Climatology Network, we cannot use the Global 1563

Historical Climatology Network estimates. However, 1564

we can estimate their urbanization by assigning the 1565

station co-ordinates to the gridded urbanization es- 1566

timates from the GRUMP dataset (see Ref. [61] for 1567

details on the GRUMP dataset). This approach iden- 1568

tifies 45.0% of the COOP neighbours as being “ur- 1569

ban” (for comparison, 55.6% of the U.S. Historical 1570

Climatology Network stations are urban with this 1571

approach). In other words, nearly half of the neigh- 1572

bours used for homogenizing the stations are urban. 1573

Since, this ratio is higher in urbanized areas, it is 1574

likely that the step-change homogenization approach 1575

used for generating the Time-of-observation and step- 1576

change adjusted dataset has led to “urban blending” 1577

into many of the rural stations which are near urban- 1578

ized areas. 1579

We can see from Figure 14 that a large fraction of 1580

the good quality stations are in urbanized areas. The 1581

sample size of the good quality stations is already 1582

quite low (8%), so there are probably not enough 1583

stations to reliably estimate U.S. regional trends by 1584

considering just the stations which are both of a good 1585

quality and rural. If the siting quality of the Global 1586

Historical Climatology Network is similar to that of 1587

the U.S. network, then the problem of separating the 1588

two confounding biases is likely to be even more chal- 1589

lenging for the more urbanized global network. 1590

It may be difficult to obtain a large enough sample 1591

of stations that are unaffected by either urbanization 1592

bias or inadequate station exposure, for directly as- 1593

sessing genuine climatic trends. Still, if the extent of 1594

urbanization bias is comparable in each subset, then 1595

it may still be possible to reliably estimate the bias in- 1596

troduced by inadequate station exposure, separately. 1597

This is because, we can then assume the urbanization 1598

bias will be roughly the same magnitude in each of 1599
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the subsets. In other words, while the temperature1600

trends of the subsets may be affected by urbanization1601

bias, the differences between the trends should not be1602

overly affected.1603

Table 5 shows the degree of urbanization of each of1604

the subsets. There are some differences between the1605

subsets. For example, both the good quality (Rat-1606

ings 1 & 2) and the bad quality (Rating 5) stations1607

have a relatively high percentage of fully urban sta-1608

tions. Similarly, there is a relatively high percentage1609

of fully rural stations of Rating 3, although a quite1610

low percentage for Rating 5. However, in general, the1611

ratios seem to be roughly similar to the average for1612

the entire U.S. Historical Climatology Network (i.e.,1613

the bottom row in Table 5). Therefore, it is probably1614

still a reasonable approximation, provided we recog-1615

nise that the estimates of the station exposure biases1616

will be affected by the differences in urbanization bias1617

between subsets. In some cases, these urbanization1618

differences may be quite large, as in the Martinez et1619

al., 2012 study.1620

Degree of urbanization
Rating Fully rural Intermediate Fully urban
1 & 2 20.0% 61.3% 18.8%
3 27.2% 62.7% 10.1%
4 23.3% 69.8% 6.9%
5 8.2% 73.8% 18.0%
Unrated 21.8% 75.4% 2.8%
Average 22.7% 69.1% 8.1%

Table 5: The percentage urbanization of each of the
Surface Stations subsets.

4.4 Are the time-of-observations1621

adjustments reliable?1622

One of the main homogeneity adjustments applied to1623

the U.S. Historical Climatology Network records is to1624

correct for non-climatic biases introduced by docu-1625

mented changes in the time at which observers made1626

their measurements at individual stations. Karl et1627

al., 1986 calculated that if observers were estimating1628

daily mean temperatures from a single daily reading1629

of a minimum-maximum thermometer, then the time1630

of day in which they made their observation would1631

have significantly affected the mean monthly temper-1632

atures which they obtained[25]. They calculated sta-1633

tistical estimates for this “time-of-observation bias”,1634

which vary seasonally (from month to month), and1635

regionally, e.g., the magnitude of the biases tends to1636

increase with latitude because of the larger daily tem- 1637

perature range. 1638

With this in mind, when the National Climatic 1639

Data Center was compiling the U.S. Historical Clima- 1640

tology Network, they collected the observation times 1641

associated with each station, whenever they were re- 1642

ported. They then applied the corresponding Karl et 1643

al., 1986 adjustments to each of the station records for 1644

two of their releases (i.e., the Time-of-observation ad- 1645

justed and Time-of-observation and step change ad- 1646

justed datasets). 1647

Figure 15: Mean time-of-observation adjustments ap-
plied by the National Climatic Data Center to the grid-
ded subsets.

Since the U.S. station histories indicate a general 1648

reduction in the number of evening observers and in- 1649

crease in the number of morning observers, the time- 1650

of-observation adjustments have the net effect of in- 1651

troducing a post-1930s warming trend into the U.S. 1652

temperature trends3 - see Figure 15. In general, each 1653

of the homogeneity adjustments developed by the Na- 1654

tional Climatic Data Center for the U.S. Historical 1655

3Although, the pre-1930s adjustments introduce a cooling
trend.
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Climatology Network coincidentally seem to intro-1656

duce “more warming” (e.g., see our analysis in Ref.1657

[13]). This seems to have led to some cynicism about1658

their reliability[1, 17, 63]. In particular, Balling &1659

Idso, 2002 criticised the time-of-observation adjust-1660

ments and argued that the unadjusted data appeared1661

to better match satellite and radiosonde estimates of1662

surface temperature changes[63]. In response, Vose1663

et al., 2003[26] updated Karl et al., 1986’s study us-1664

ing a larger dataset. They found similar results to1665

Karl et al., 1986, and so concluded that their original1666

time of observation bias adjustments were reasonably1667

accurate.1668

A detailed assessment of the time-of-observation1669

bias adjustments used by the National Climatic Data1670

Center is beyond the scope of this article. We1671

will note that our preliminary calculations suggest1672

that their adjustments are reasonable, provided the1673

archived station histories for the U.S. Historical Cli-1674

matology Network are accurate, and that the time-1675

of-observation changes do not involve other station1676

changes. For this reason, we will assume that the1677

Time-of-observation adjusted dataset is more reliable1678

than the Unadjusted dataset.1679

The adjustments are of a relatively large magni-1680

tude, however, e.g., doubling the linear trends of the1681

good, intermediate and bad quality subsets - see Ta-1682

ble 1. So, a more careful assessment of their reli-1683

ability may be warranted. In particular, it might1684

be worth checking whether the documented time-of-1685

observation changes also coincided with other non-1686

climatic changes, e.g., changes in instrumentation or1687

station location. One way to assess the adjustments1688

would be to compare the differences between the tem-1689

perature record and the records of the station’s neigh-1690

bours before and after adjustments.1691

With this in mind, the estimates of the biases in-1692

troduced from inadequate station exposure which are1693

determined from the Time-of-observation adjusted1694

dataset should be more reliable than those deter-1695

mined from the Unadjusted dataset. If the time-of-1696

observation adjustments are similar for all stations,1697

on average, then these estimates should be the same,1698

in which case it would be irrelevant which dataset1699

was used. However, it can be seen from Figure 151700

that there are slight differences in the mean adjust-1701

ments applied to each of the subsets. Part of this1702

may be a statistical artefact, due to some of the sub-1703

sets having relatively small sample sizes. But, it is1704

plausible that some of the factors influencing station1705

quality may also be related to observer practice, in1706

which case there may be a genuine difference between 1707

subsets. 1708

The main difference between the subsets is that 1709

the adjustments during the 1930s are slightly greater 1710

for the bad quality subset. This increases the long- 1711

term trend of the difference between the bad quality 1712

and good quality subsets (see Figure 8), and therefore 1713

the estimate of the bias, as can be seen from Table 2. 1714

There is also a slight reduction in the estimate of the 1715

bias for the poor quality subset. 1716

Watts et al. (in preparation, 2012) did not use 1717

the Time-of-observation adjusted dataset for their 1718

estimates of the biases, favouring the Unadjusted 1719

dataset[17]. As explained above, if the mean time-of- 1720

observation adjustments are similar for all subsets, 1721

then this should not matter. They used a differ- 1722

ent rating system which created a more evenly di- 1723

vided group of subsets, than the one we used. So, it 1724

is plausible that this could have reduced the differ- 1725

ences between the adjustments applied to each sub- 1726

set. If this is the case, then the application of Time- 1727

of-observation adjustments should not substantially 1728

alter the findings of Watts et al., but this would need 1729

to be tested. 1730

As this article is focused on the reliability of the 1731

U.S. station records, the issue of time-of-observation 1732

biases in other networks is a subject for a separate 1733

study. However, we do think it is worth mentioning 1734

that systematic changes in observation time are not 1735

confined to the U.S. For instance, in August 1961, 1736

stations in the People’s Republic of China changed 1737

from taking measurements at 01, 07, 13 and 19h local 1738

mean solar time to 02, 08, 14 and 20h Beijing time, 1739

i.e., local mean solar time at 120◦E [64]. On 1st July 1740

1961, the observation times at all Canadian airport 1741

weather stations were changed from 12h UTC (for 1742

maximum temperatures) and 00h UTC (for minimum 1743

temperatures) to 06h UTC[65]. In Japan, stations 1744

generally have a time-of-observation of midnight (00h 1745

JST). But, before 1940, it was 22h JST and during 1746

the period 1953-1963, minimum temperatures were 1747

observed separately at 09h JST[66]. 1748

For this reason, it is likely that time-of-observation 1749

adjustments are also necessary for other countries. In 1750

the case of the U.S., the bias seems to have led to a 1751

significant artificial cooling trend over the 20th cen- 1752

tury[26]. Similar biases, either cooling or warming, 1753

may also exist for many of the stations in the Global 1754

Historical Climatology Network, and they may have 1755

led to systematic biases for individual countries. For 1756

instance, in Australia, a change in the official obser- 1757
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vation time in 1964 to 0900 local time appears to1758

have introduced an artificial warm bias in the records1759

relative to the pre-1964 periods[67]. Also, the U.S.1760

time-of-observation adjustments suggest a pre-1930s1761

warming bias (see Figure 15). Until the signs and1762

magnitudes of these biases can be reliably determined1763

for the Global Historical Climatology Network sta-1764

tions, the records for those stations should be treated1765

cautiously.1766

If future researchers attempt to track down ob-1767

servation times for stations outside of the U.S., it1768

may also be important to check if time of observa-1769

tion adjustments have already been applied to the1770

station records. Jones et al., 1986[56] suggest that1771

time-of-observation bias corrections may have already1772

been applied to some records, before incorporation in1773

datasets, e.g., “Such adjustments were used in [the1774

World Weather Records dataset] for the United States1775

up to 1940 or 1950 (depending on the station)”[56].1776

The U.S. Historical Climatology Network was com-1777

piled directly from the COOP archive[25]. So, it is1778

likely that their source records had not been corrected1779

for time of observation. However, the Global Histor-1780

ical Climatology Network dataset was compiled from1781

pre-existing datasets (including the World Weather1782

Records), so it is possible that some of its station1783

records have already had time-of-observation correc-1784

tions, while others have not.1785

4.5 Are the step-change adjustments1786

reliable?1787

From Figure 8, it is clear that the differences between1788

the subsets are considerably reduced in the Time-of-1789

observation and step-change adjusted dataset, com-1790

pared to the Unadjusted and Time-of-observation ad-1791

justed datasets. In this sense, the step-change adjust-1792

ments have led to a greater “homogeneity” between1793

individual station records. However, this does not ac-1794

tually tell us whether the more homogeneous records1795

are more or less climatically representative.1796

As we mentioned in Section 3, one explanation for1797

the greater homogeneity is that the step-change ad-1798

justments have succeeded in substantially reducing1799

the magnitude of the non-climatic biases in the sta-1800

tion records. If this is the case, then Menne et al.,1801

2010 are correct in concluding that the station quality1802

problems identified by the Surface Stations project1803

do not seriously affect the Time-of-observation and1804

step-change adjusted estimates of U.S. temperature1805

trends[2]. But, another explanation is that the1806

greater homogeneity arises because the non-climatic 1807

biases have been averaged between neighbouring sta- 1808

tions through “blending” of the biases, rather than 1809

removed. 1810

In other words, the records with the most non- 1811

climatic biases will have some of their biases correctly 1812

removed by the process, but the records with the 1813

least non-climatic biases will have the non-climatic 1814

biases of their neighbours introduced by the pro- 1815

cess[55]. If this is the case, then Watts et al. (in 1816

preparation, 2012) are correct in concluding that the 1817

homogenization process has reduced the reliability of 1818

the good quality station records, and that the non- 1819

homogenized records are therefore more reliable, even 1820

if they have not been corrected for non-climatic bi- 1821

ases[17]. Essentially, Watts et al. are arguing that, 1822

while the Unadjusted records probably contain non- 1823

climatic biases, on average, they are still more re- 1824

liable than the Time-of-observation and step-change 1825

adjusted records. 1826

As we discussed in Section 4.4, we are assuming 1827

the Time-of-observation adjusted dataset is more cli- 1828

matically representative than the Unadjusted dataset 1829

favoured by Watts et al. (in preparation, 2012). How- 1830

ever, we also saw from Figure 15 that the net effect 1831

of these adjustments is broadly similar for all of the 1832

subsets. Indeed, the largest adjustments were for the 1833

bad quality subset, and as a result, had the effect 1834

of increasing the bias estimates for the bad quality 1835

subset. Hence, the main question that needs to be 1836

resolved is whether the step-change adjustments im- 1837

prove or reduce the reliability of the records. 1838

With this in mind, it is worth carefully consider- 1839

ing how the step-change adjustments are carried out. 1840

When the Surface Stations project began, the Na- 1841

tional Climatic Data Center were still using the Karl 1842

& Williams, 1987 algorithm[68] for their step-change 1843

homogenization of the U.S. Historical Climatology 1844

Network dataset. However, in 2009, they updated the 1845

dataset (see Menne et al., 2009[24]), and began using 1846

the newer Menne & Williams, 2009 algorithm[27]. 1847

There are several important differences between 1848

the two algorithms, e.g., the Karl & Williams, 1987 1849

algorithm only tested for non-climatic biases when 1850

it was known from the station histories that a sig- 1851

nificant change had occurred, while the Menne & 1852

Williams, 2009 algorithm can test for both docu- 1853

mented and undocumented changes. However, for 1854

the purposes of the following discussion, both algo- 1855

rithms are equivalent. Pielke et al., 2007b[10]’s criti- 1856

cism of the Karl & Williams, 1987 algorithm is similar 1857
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to ours, and so also applies to the current Menne &1858

Williams, 2009 algorithm.1859

Both algorithms work by comparing the tempera-1860

ture records of each “target” station to the records1861

of a large number of neighbouring stations (20 for1862

Karl & Williams, 1987; 40 for Menne & Williams,1863

2009). In both algorithms, the years of potential1864

station changes are identified from the station his-1865

tory files. But, the Menne & Williams, 2009 algo-1866

rithm also looks for additional undocumented station1867

changes, by comparing the target to each neighbour1868

in turn, and noting the approximate years of any ap-1869

parent discrepancies between the stations. If an ap-1870

parent discrepancy occurs at around the same time1871

in several neighbour-target comparison, then it is as-1872

sumed that this corresponds to a station change, or1873

“change-point” in the target station.1874

It should be noted that, if similar biases occur1875

around the same time in enough neighbours, then this1876

could cause the algorithm to incorrectly identify the1877

target station as having the bias. This means that1878

if biases are relatively frequent amongst the neigh-1879

bours, any target stations which are genuinely unbi-1880

ased will be mistakenly treated as non-climatic “out-1881

liers”, while the biased records will be mistakenly1882

treated as the climatic trends. Stations which are1883

heavily biased should be correctly identified as “out-1884

liers”, and their biases would be reduced, however1885

only enough to match the average of the neighbours1886

- which would themselves be biased. This would lead1887

to a blending (or “homogenization”) of the biases1888

amongst all the stations in the vicinity, whether bi-1889

ased or not.1890

To estimate the sign and magnitude of any non-1891

climatic biases introduced by the proposed change-1892

points, the target station is again compared to the1893

neighbours, one at a time. The temperature record of1894

each neighbour is subtracted from the target’s record,1895

to construct a “difference series”. The mean temper-1896

ature difference of the segment after the proposed1897

change-point is compared to the mean temperature1898

difference of the segment before the proposed change-1899

point. If the difference between the two means is1900

greater than a certain threshold value, then it is con-1901

sidered as a possible step-change bias. The differ-1902

ent estimates of this proposed bias are compared for1903

each neighbour, and if there is sufficient agreement1904

between the estimates, then all of the years up to1905

the year of the change-point are adjusted by that1906

value[27, 68].1907

As deGaetano, 2006[69] and Pielke et al., 2007b[10]1908

note, and as we discuss in Ref. [13], these step- 1909

change adjustments are inadequate for correcting 1910

trend biases, such as urbanization bias. The Menne 1911

& Williams, 2009 algorithm does actually con- 1912

sider trend biases when identifying potential change- 1913

points[27]. However, since they then treat the iden- 1914

tified biases as step-change biases, the algorithm is 1915

still inadequate. For instance, let us suppose that 1916

the algorithm correctly identifies the start of a trend 1917

bias, and the trend bias is roughly linear in nature. 1918

In that case the mean value of the bias will only be 1919

half of the bias at the end of the segment, and the 1920

adjustment will be incomplete. 1921

Pielke et al., 2007b[10] tested the effectiveness of 1922

the Karl & Williams, 1987[68] homogeneity adjust- 1923

ments algorithm. They simulated 1000 temperature 1924

records, and introduced artificial step change biases 1925

and trend biases into these simulated records. When 1926

they applied the Karl & Williams algorithm to these 1927

records, they found the algorithm overestimated the 1928

magnitude of positive step changes, and underesti- 1929

mated the magnitude of negative step changes if the 1930

station being homogenized also had a warming trend 1931

bias[10]. This confirms that the statistical “alias- 1932

ing” effect described above is a problem when station 1933

records are affected by trend biases. 1934

An additional problem of trend biases is that, if a 1935

neighbouring station suffers from a trend bias, then 1936

this will increase (or decrease) the estimates of any 1937

potential step-change adjustments. 1938

Next, we shall consider how these algorithms op- 1939

erate on the U.S. Historical Climatology Network 1940

datasets. However, before doing so, it is worth con- 1941

sidering an additional change the National Climatic 1942

Data Center adopted with their 2009 update[24]. 1943

When they switched to using the Menne & Williams, 1944

2009 algorithm, they also switched to using the entire 1945

COOP Network for their station neighbours, rather 1946

than just using the Historical Climatology Network 1947

stations. 1948

There are at least three serious problems with this 1949

decision: 1950

1. Because the National Climatic Data Center do 1951

not currently provide easy access to the COOP 1952

Network dataset, their decision makes it harder 1953

for researchers to replicate and/or assess the re- 1954

liability of their step-change adjustments. In 1955

our case, we were only able to carry out our 1956

analysis of the COOP neighbours because we 1957

had downloaded a 2011 version of the COOP 1958

datasets from a temporary folder on the National 1959
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Climatic Data Center’s public ftp website (we1960

downloaded them from ftp://ftp.ncdc.noaa.1961

gov/pub/data/williams/).1962

2. The Historical Climatology Network stations1963

were partially chosen on the basis that they had1964

relatively long and complete station records[70].1965

As a result, the average period of overlap be-1966

tween neighbouring Historical Climatology Net-1967

work stations is much greater (78±12 years) than1968

the overlap between Historical Climatology Net-1969

work stations and their nearest COOP stations1970

(29 ± 6 years) (see our discussion in Ref. [13]).1971

This shorter length means that the homogeniza-1972

tion algorithm is less likely to correctly iden-1973

tify the non-climatic biases in the records being1974

homogenized. The problem is also accentuated1975

by the Menne & Williams, 2009 algorithm, be-1976

cause they preferentially select neighbours which1977

have a higher correlation with the target sta-1978

tion[27]. This is a problem because poorly cor-1979

related station records are more likely to appear1980

well-correlated, if the period of overlap between1981

the records is short, as we illustrate in Ref. [13].1982

3. The Surface Stations project only investigated1983

the U.S. Historical Climatology Network sta-1984

tions, and as a result, Surface Stations ratings1985

are not available for the 90% of COOP stations1986

which are not in the Historical Climatology Net-1987

work.1988

On this last point, it seems reasonable to assume1989

that the COOP stations have a similar statistical dis-1990

tribution of ratings to the Historical Climatology Net-1991

work, i.e., something similar to Figure 1. The His-1992

torical Climatology Network was constructed from1993

COOP stations, so it is likely that it has a similar1994

distribution of ratings. Indeed, Fall et al., 2011 note1995

that several station observers were unaware whether1996

their station was part of the Historical Climatology1997

Network or not[14]. This suggests that the differ-1998

ences between COOP stations and Historical Clima-1999

tology Network stations were not even clear to the2000

observers. However, this does not tell us specifically2001

which neighbours are of good, intermediate, poor or2002

bad quality.2003

Let us now consider the effects of the Menne &2004

Williams, 2009 step change adjustments on the U.S.2005

Historical Climatology Network stations. From our2006

discussion throughout this article, we can make sev-2007

eral predictions as to what these effects would be.2008

We saw in Section 4.3 that a substantial percentage 2009

of the U.S. stations are at least partially urbanized, 2010

and hence many of the COOP neighbours used for ho- 2011

mogenizing the Historical Climatology Network sta- 2012

tions would be affected by urbanization bias. For this 2013

reason, we would expect that stations with urbanized 2014

neighbours would be affected by urban blending. 2015

Figure 16: Locations of the neighbouring COOP sta-
tions in the vicinity of a good quality station, Fairmont.

Figure 17: Locations of the neighbouring COOP sta-
tions in the vicinity of a bad quality station, Winfield
Locks.

The urbanization (warming) bias of the most heav- 2016

ily affected stations would be slightly reduced, but in 2017

a similar manner, many of the rural stations with no 2018

urban bias would have an artificial warming trend in- 2019

troduced by urban blending. Our analysis in Ref. [13] 2020

suggests that this is the case. As mentioned earlier, 2021

the application of step-change adjustments, such as 2022

the Menne & Williams, 2009 algorithm, to trend bi- 2023

ases substantially underestimates the biases because 2024
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of statistical “aliasing” effects[10, 13, 69]. Hence, we2025

would expect that, on average, the net effect of the2026

adjustments would be the introduction of an artifi-2027

cial warming trend into all subsets that is roughly2028

half the magnitude of the urbanization bias present2029

in the Time-of-observation adjusted dataset.2030

Figures 16 and 17 show the COOP neighbouring2031

stations in the vicinity of a typical rating 1 and rat-2032

ing 5 station, respectively. As expected, most of the2033

neighbouring stations are unrated. But, in neither2034

of the cases, are many of the rated neighbours of a2035

good quality. If we assume that the COOP stations2036

have a similar distribution of ratings to the Histori-2037

cal Climatology Network, then statistically, we would2038

expect that only about 8% of the neighbours will be2039

of a good quality. In other words, the good quality2040

stations are likely to be considered as statistical out-2041

liers. The 6% of bad quality stations would also be2042

considered statistical outliers, in a similar manner.2043

We would therefore expect that the trends of the2044

“outlier” stations will be adjusted to better match2045

those of the most common stations. Hence, we would2046

expect that, while the warming trends of the bad2047

quality stations would be partially reduced to better2048

match those of the poor quality stations, the trends2049

of the good quality would incorrectly be increased to2050

better match those of the poor quality stations. The2051

net effect of these adjustments would be to reduce2052

the differences between the subsets.2053

As we mentioned in Section 4.1, the step-change2054

adjustments are calculated retrospectively, i.e., when2055

a non-climatic bias is identified, the most recent tem-2056

peratures are assumed to be “correct”, and the earlier2057

temperatures are adjusted to match. A consequence2058

of this is that the net adjustments of all subsets will2059

converge towards zero for the most recent years, in-2060

troducing an artificial convergence between the sub-2061

sets.2062

If these predictions are accurate, then the step-2063

change adjustments would actually reduce the reli-2064

ability of the records. At any rate, they would lead2065

to unreliable estimates of the station exposure biases.2066

The net adjustments applied to each subset are shown2067

in Figure 18. They are certainly consistent with all of2068

the predictions described above. For this reason, we2069

suggest that the bias estimates from the Unadjusted2070

and Time-of-observation adjusted datasets are cur-2071

rently the most accurate. This would invalidate the2072

conclusions of Menne et al., 2010, who assumed that2073

the estimates from the Time-of-observation and step-2074

change adjusted dataset were the most reliable[2].2075

Figure 18: Mean step-change adjustments applied by
the National Climatic Data Center to the gridded sub-
sets using the Menne & Williams, 2009[27] algorithm.

Having said that, we must also acknowledge that 2076

there are also many other non-climatic biases in sta- 2077

tion records, e.g., station moves and changes in in- 2078

strumentation. Many of these biases are probably 2079

the step-change biases which the Menne & Williams, 2080

2009 algorithm was designed to remove[27]. Näıvely, 2081

it might be expected that, statistically, these biases 2082

should “cancel” each other out over time. However, 2083

non-climatic biases are often of the same sign and 2084

can lead to long-term apparent trends in the station 2085

records[71, 72]. 2086

Runnalls & Oke, 2006 suggest it is possible that 2087

this could have a tendency to introduce an appar- 2088

ent warming trend[72], in which case, a successful 2089

step-change adjustment algorithm would lead to net 2090

“cooling” adjustments. But, they point out that it 2091

could also lead to the opposite, in which case, suc- 2092

cessful step-change adjustments would lead to net 2093

“warming” adjustments. In other words, it is plausi- 2094

ble that at least some of the “warming” introduced 2095

to the Historical Climatology Network by the step- 2096

change adjustments may be genuine. However, since 2097
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it is expected for the reasons described above that2098

the step-change adjustments will mistakenly intro-2099

duce substantial artificial warming trends, it seems2100

unwise to make any assumptions about the correct2101

sign of the remaining non-climatic biases, yet.2102

5 Recommendations to2103

improve the reliability of2104

climate records2105

We saw that the majority of thermometer stations2106

in the U.S. Historical Climatology Network currently2107

suffer from inadequate siting, and that this has in-2108

troduced artificial warming trends into estimates of2109

U.S. temperature trends. It is quite likely that a sig-2110

nificant fraction of stations in the global network are2111

also affected by poor-siting problems. Indeed, from2112

preliminary assessments4 of the Global Historical Cli-2113

matology Network stations from the rest of the world,2114

there seem to be a mixture of poor quality and good2115

quality stations.2116

With this in mind, we believe it would be useful2117

if a global extension of the Surface Stations project2118

were carried out so that the magnitude of the siting2119

biases in the current estimates of global temperature2120

trends could be determined. Since such a project2121

would require considerable organization and interna-2122

tional collaboration, it might be useful to carefully2123

discuss how to assess the stations. In their initial2124

assessments, the Surface Stations team used Leroy,2125

1999[22]’s rating system, but Watts et al. (in prepa-2126

ration, 2012) suggest that the rating system proposed2127

by Leroy, 2010[31] is more appropriate. Decisions on2128

whether to use one of these two systems, or another2129

should be agreed at the start of the project. It would2130

be desirable to choose a rating system that would al-2131

low comparable estimates of past station exposures to2132

be at least approximated from the site documentation2133

which is sometimes included by station histories[10].2134

According to Watts et al. (in preparation,2135

2012)[17], the Surface Stations team did not collect2136

enough information to adequately rate the shading2137

and ground cover associated with stations and their2138

ratings were instead predominantly based on heat2139

4See the “surfacestation” posts on the Tallbloke’s
Talkshop blog, the following posts on Roger Pielke Sr.’s
blog: 2011/08/11, 2011/08/16, 2011/08/17, 2011/08/23,
2011/08/29, 2011/09/08, 2011/09/16,2011/09/27 and
2011/09/28, or these Watts Up With That posts on the
Sydney, Australia station: 2008/07/02 and 2013/01/14.

source/sink proximity. Changes in shading and/or 2140

ground cover, e.g., from growth/removal of neigh- 2141

bouring trees, can substantially alter micro-climate[3, 2142

4]. So, future investigations should also investigate 2143

these factors. 2144

It would probably be sensible if the team involved 2145

in the original Surface Stations project were con- 2146

sulted before this type of project is begun on a global 2147

scale, as they already have several years of valu- 2148

able experience in carrying out station quality assess- 2149

ments. 2150

Such a global project would probably have been 2151

too overwhelming a task during the 1990s, when 2152

the Global Historical Climatology Network was be- 2153

ing first compiled. But, with modern improvements 2154

in the globalization of communication, data archiv- 2155

ing and data sharing such a project is probably now 2156

feasible. 2157

It would also be desirable if repeat station surveys 2158

could be carried out every few years, as Leroy, 2010 2159

recommends[31]: 2160

The rating of each site should be reviewed 2161

periodically as environmental circumstances 2162

can change over a period of time. A sys- 2163

tematic yearly visual check is recommended: 2164

if some aspects of the environment have 2165

changed, a new classification process is nec- 2166

essary. 2167

A complete update of the site classes should 2168

be done at least every 5 years. 2169

A major difficulty in resolving the issue of how 2170

station exposure have biased long term temperature 2171

trends is that the Surface Stations project only pro- 2172

vides us with information about the current station 2173

quality. Repeat surveys every few years, as suggested 2174

above, would reduce this issue, going forward. But, 2175

if we want to continue to use station data for earlier 2176

periods, we should probably attempt to collect more 2177

information on the quality of these stations for earlier 2178

times. 2179

Pielke et al., 2007b[10] note that for the early and 2180

middle part of the 20th century, COOP observers 2181

were encouraged to provide hand-drawn schematics 2182

illustrating the site exposure associated with their 2183

stations. Although these schematics were generally 2184

not as comprehensive as the descriptions compiled 2185

by the Surface Stations project, and station moves 2186

were not always documented[10], it may be possi- 2187

ble that partial estimates of the historical station 2188

exposures can be reconstructed from these schemat- 2189
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ics. In the 1980s, these schematics were replaced2190

with more cryptic, and less informative, shorthand2191

notation so that they could be entered into simple2192

computer forms. Nonetheless, when combined with2193

the earlier schematics and photographic evidence of2194

the current site exposure, it may be possible to re-2195

construct reasonable approximations of the site ex-2196

posures during that period.2197

We saw in Section 4.5 that the step-change homog-2198

enization algorithm currently used by the National2199

Climatic Data Center is unable to correctly deal with2200

the siting biases in the U.S. Historical Climatology2201

Network. In Ref. [13], we also showed that this algo-2202

rithm breaks down when a large number of stations2203

are affected by urbanization bias (or any non-climatic2204

trend biases). All automated statistical homogeniza-2205

tion algorithms are by their nature imperfect, since2206

they result in a mixture of true positives, true neg-2207

atives, false positives and false negatives. However,2208

while the Menne & Williams, 2009 algorithm appears2209

to perform relatively well on synthetic temperature2210

records[24, 73], it appears to be seriously problematic2211

when dealing with the extensive non-climatic biases2212

present in the U.S. Historical Climatology Network,2213

and presumably also the Global Historical Climatol-2214

ogy Network.2215

We appreciate that it is important to remove these2216

non-climatic biases, as well as others, e.g., station2217

moves, time-of-observation biases or changes in in-2218

strumentation. A considerable amount of work has2219

already been carried out in assessing these step-2220

change homogenization techniques, e.g., see Refs. [69,2221

73, 74]. However, the current step-change homoge-2222

nization approaches still seem to introduce at least2223

as many problems as they remove. For this reason, it2224

seems unwise to apply these approaches to the tem-2225

perature records in an automated manner, as is cur-2226

rently done.2227

We suggest that, if researchers want to continue2228

to use these automated homogenization approaches,2229

they should only be used for identifying potential2230

step changes (and possibly estimating their magni-2231

tudes), and flagging them for the researcher to man-2232

ually check, on a case-by-case basis. Records of the2233

researcher’s justifications for accepting/rejecting in-2234

dividual adjustments should be kept, and provided2235

to users of the data, who want to make their own2236

assessments. This would require more work on the2237

part of the researcher, e.g., a typical station record2238

may contain about 6 such flags per 100 years[27], and2239

regional station networks may contain hundreds or2240

thousands of station records. But, from our discus- 2241

sion in Section 4.5, it seems manual checks are still 2242

necessary. 2243

Rather than focusing on developing automated sta- 2244

tistical methods for identifying undocumented non- 2245

climatic biases, maybe we should first attempt to col- 2246

lect (and digitize, where necessary) as much informa- 2247

tion on individual station histories as possible. When 2248

we have a more complete knowledge of the potential 2249

non-climatic biases for which documentation is avail- 2250

able, and have developed a more accurate knowledge 2251

of the impact of the documented biases, we may be 2252

in a better position to assess how to best treat the 2253

undocumented biases. 2254

While station histories were collected during the 2255

compilation of the U.S. Historical Climatology Net- 2256

work, the same was not done for the Global His- 2257

torical Climatology Network. When Peterson et al., 2258

1997 were compiling the Global Historical Climatol- 2259

ogy Network[60], they were mainly combining pre- 2260

compiled temperature (and precipitation) datasets. 2261

These datasets often just contained mean monthly 2262

temperature (and/or precipitation) values, and so Pe- 2263

terson et al. decided not to consider detailed station 2264

histories and metadata. 2265

Although it is true that standards differ between 2266

meteorological organisations, and the level of doc- 2267

umentation may vary from station to station, it is 2268

likely that there is a considerable amount of use- 2269

ful station documentation out there, which could be 2270

useful. We suggest that, if the station observers 2271

and/or meteorological organisations associated with 2272

given stations are contacted directly, relatively de- 2273

tailed station histories may be available. If a global 2274

equivalent of the Surface Stations project were to be 2275

organised the collection of these details could be car- 2276

ried out simultaneously. 2277

Better station histories and documentation could 2278

allow researchers to dramatically increase the relia- 2279

bility of the global climate network. For instance, if 2280

time-of-observation biases are as serious a problem 2281

for U.S. stations as is claimed[25, 26], then it is likely 2282

that similar problems exist for other networks in the 2283

Global Historical Climatology Network. Station his- 2284

tories could provide information on the observation 2285

times and averaging methods used at different sta- 2286

tions, which could help researchers assess these prob- 2287

lems. 2288

As we discuss in Refs. [11–13], many of the long 2289

station records in the Global Historical Climatology 2290

Network contain a large number of unexplained data 2291
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gaps. These also are frequently associated with large2292

temperature changes. The station observers, or sta-2293

tion histories may be able to explain those gaps, and2294

also whether any temperature changes between the2295

gaps are likely to be climatic or not. In some cases, it2296

may be possible to update the temperature records, if2297

extra data is available. We note that it may be useful2298

to also collect daily measurements too, if possible, as2299

daily measurements often provide more insight than2300

monthly measurements[75].2301

In terms of how such a global project could be orga-2302

nized, we note that, in the U.S. alone, approximately2303

$2.5 billion/year is currently allocated for “federal re-2304

search on global change and climate change” through2305

the United States Global Change Research Program.2306

In such terms, a relatively small outlay of fund-2307

ing into systematic methodical on-site assessments2308

and updates of station records and station histories2309

would drastically improve the reliability of our cli-2310

mate records. Even in the absence of direct funding,2311

the success of the Surface Stations project as well as2312

other climate-related volunteer projects, such as the2313

Old Weather and Climate Prediction projects, sug-2314

gests that there could be sufficient interest in “citi-2315

zen science” research[76] for a global extension of the2316

original Surface Stations study of U.S. stations. If2317

this approach was taken, it would be useful if the2318

project received explicit approval and cooperation2319

from the various international meteorological agen-2320

cies whose stations would be considered. The back-2321

ing of the World Meteorological Organization would2322

probably help such a project.2323

Finally, we note that government-funded, high2324

quality, carefully located and sited, modern climate2325

networks like the National Climatic Data Center’s2326

U.S. Climate Reference Network (USCRN), if prop-2327

erly managed, have the potential to offer future re-2328

searchers climate records which would be unaffected2329

by many of the main non-climatic biases plaguing cur-2330

rent studies, e.g., urbanization bias, siting bias, time-2331

of-observation bias and possibly instrumental bias[77,2332

78]. The U.S. Climate Reference Network already has2333

a decade of data[77], and if similar networks were set-2334

up and maintained in enough other countries, then it2335

may possible in the future to compile enough sta-2336

tions for global climate studies. We recognise that2337

this would not be of immediate benefit to current re-2338

searchers, but are reminded of the proverb: “The best2339

time to plant a tree is twenty years ago. The second2340

best time is now.”2341

6 Conclusions 2342

Recent surveys of the current thermometer station 2343

exposure of the weather stations in the U.S. Histor- 2344

ical Climatology Network have identified that about 2345

70% of stations are poorly or badly sited[1, 2]. As 2346

a result, it is likely that many of the thermometer 2347

records currently used for estimating climate trends 2348

(both regional U.S. temperature trends and global 2349

temperature trends) have been biased by changes in 2350

the localised micro-climate in the immediate vicinity 2351

of the thermometer stations, rather than representing 2352

purely climatic trends. However, attempts to quan- 2353

tify these siting biases have until now been somewhat 2354

contradictory and controversial[1, 2, 14–17]. 2355

In this study, we estimate that siting biases have 2356

artificially increased the mean temperature trends of 2357

the Unadjusted station records by about 32%, with 2358

the subset of the worst-sited stations being increased 2359

by about 56%. When time-of-observation adjust- 2360

ments were applied to the station records, this led to 2361

a mean increase in temperature trends of about 39%, 2362

as has been previously noted[26, 63]. For this reason, 2363

although the siting biases remained similar in magni- 2364

tude, the relative fraction of the temperature trends 2365

in the Time-of-observation adjusted station records 2366

that was due to siting biases was reduced - an ar- 2367

tificial warming of about 18% for all rated stations, 2368

and about 49% for the worst-sited stations. This still 2369

represents a substantial bias. 2370

When the Time-of-observation adjusted station 2371

records were also homogenized with step-change ad- 2372

justments using the Menne & Williams, 2009 algo- 2373

rithm[27], the differences between all subsets of sta- 2374

tions were substantially reduced. There was no longer 2375

much difference in temperature trends between the 2376

good quality stations and the bad quality stations. 2377

Previously it had been argued that this was because 2378

the step-change adjustments had removed most of 2379

the siting biases in the station records[2]. How- 2380

ever, our analysis shows that the Menne & Williams, 2381

2009 adjustments actually lead to considerable blend- 2382

ing/mixing of siting biases between stations, rather 2383

than their removal. As a result, the current Time-of- 2384

observation and step-change adjusted version of the 2385

U.S. Historical Climatology Network is unreliable, 2386

and its use should be discontinued. 2387

It seems likely that similar siting biases also exist 2388

in the Global Historical Climatology Network, which 2389

has been frequently used for estimating global tem- 2390

perature trends. This suggests that current estimates 2391
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of the amount of “global warming” since the 19th2392

century (e.g., Ref. [23]) have been significantly over-2393

estimated.2394

Siting biases are not the only non-climatic biases2395

affecting the thermometer stations being used for2396

studying climatic trends. For instance, in Refs. [11–2397

13] we discuss the widespread problem of urbaniza-2398

tion bias in current thermometer records. We agree2399

that thermometer station records could be an invalu-2400

able resource for evaluating global and regional tem-2401

perature trends. However, many of the problems2402

identified by earlier researchers, such as Mitchell,2403

1953[79] have still not been adequately resolved. In2404

Section 5, we offer a number of recommendations2405

which we believe would lead to more reliable climate2406

records.2407
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